分析 (1)连结OD,如图,利用切线性质得∠ODB+∠PDB=90°,由CD⊥OB得∠CDB+∠DBC=90°,加上∠ODB=∠OBD,于是得到∠CDB=∠PDB,即DB平分∠PDC;
(2)作BE⊥PD,如图,根据角平分线的性质定理得到BC=BE,在Rt△PDC中,利用三角函数的定义计算PC=8,则利用勾股定理可计算出PD=10,设BC=x,则BE=x,PB=8-x,通过证明Rt△PBE∽Rt△PDC,利用相似比得到x:6=(8-x):10,然后根据比例性质求出x即可.
解答 (1)证明:连结OD,如图,
∵PD为切线,
∴OD⊥PD,
∴∠ODP=90°,即∠ODB+∠PDB=90°,
∵CD⊥OB,
∴∠DCB=90°,
∴∠CDB+∠DBC=90°,
∵OB=OD,
∴∠ODB=∠OBD,
∴∠CDB=∠PDB,
∴DB平分∠PDC;
(2)解:作BE⊥PD,如图,
∵DB平分∠PDC,BC⊥CD,BE⊥PD,
∴BC=BE,
在Rt△PDC中,∵tanP=$\frac{CD}{PC}$=$\frac{6}{PC}$=$\frac{3}{4}$,
∴PC=8,
∴PD=$\sqrt{{6}^{2}+{8}^{2}}$=10,
设BC=x,则BE=x,PB=8-x,
∵∠EPB=∠CPD,
∴Rt△PBE∽Rt△PDC,
∴BE:DC=PB:PD,即x:6=(8-x):10,解得x=3,
即BC的长为3.
点评 本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.解决本题的关键是根据角平分线性质作BE⊥PD得到BC=BE,同时构建Rt△PBE∽Rt△PDC.
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$ | B. | 2$\sqrt{3}$+$\sqrt{3}$=3$\sqrt{3}$ | C. | $\sqrt{ab}$=$\sqrt{a}$•$\sqrt{b}$ | D. | 5$\sqrt{\frac{1}{5}}$=1 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 顶点坐标为(1,-2) | B. | 函数有最小值为-2 | ||
C. | 开口方向向上 | D. | 当x>1时,y随x的增大而减小 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | -$\frac{3}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{2}$ | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{2}$ | B. | $\frac{3}{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com