如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.
(1)证明:连接DO, ∵∠ACB=90°,AC为直径, ∴EC为⊙O的切线, 又∵ED也为⊙O的切线, ∴EC=ED.(2分) 又∵∠EDO=90°, ∴∠BDE+∠ADO=90°, ∴∠BDE+∠A=90°, 又∵∠B+∠A=90° ∴∠BDE=∠B, ∴EB=ED. ∴EB=EC,即点E是边BC的中点.(4分) (2)∵BC,BA分别是⊙O的切线和割线, ∴BC2=BD·BA, ∴(2EC)2=BD·BA,即BA·=36, ∴BA=,(6分) 在Rt△ABC中,由勾股定理得 AC===.(7分) (3)△ABC是等腰直角三角形.(8分) 理由:∵四边形ODEC为正方形, ∴∠DOC=∠ACB=90°,即DO∥BC, 又∵点E是边BC的中点, ∴BC=2OD=AC, ∴△ABC是等腰直角三角形.(10分) |
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com