【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴相交于点C(0,﹣3)
(1)求该二次函数的解析式;
(2)设E是y轴右侧抛物线上异于点A的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH,则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)设P点是x轴下方的抛物线上的一个动点,连接PA、PC,求△PAC面积的取值范围,若△PAC面积为整数时,这样的△PAC有几个?
【答案】(1);(2);(3),有5个.
【解析】试题分析:(1)设交点式为y=a(x+1)(x-3),然后把C点坐标代入求出a即可;
(2)设E(t,t2-2t-3),讨论:当0<t<1时,如图1,EF=2(1-t),EH=-(t2-2t-3),利用正方形的性质得2(1-t)=-(t2-2t-3);当1<t<3时,如图2,利用正方形的性质得2(t-1)=-(t2-2t-3),当t>3时,2(t-1)=t2-2t-3,然后分别解方程得到满足条件的t的值,再计算出对应的正方形的边长;
(3)设P(x,x2-2x-3),讨论:当-1<x<0时,由于S△ABC=6,则0<S△APC<6,当0<x<3时,作PM∥y轴交AC于点M,如图3,求出直线AC的解析式为y=x-3,则M(x,x-3),利用三角形面积公式得S△APC=3(-x2+3x),利用二次函数的性质得0<S△APC<,所以0<S△APC<6,于是得到△PAC面积为整数时,它的值为1、2、3、4、5.
试题解析:(1)设抛物线解析式为y=a(x+1)(x3),
把C(0,3)代入得3a=3,解得a=1,
所以抛物线解析式为y=(x+1)(x3),
即y=x22x3;
(2)抛物线的对称轴为直线x=1,
设E(t,t22t3),
当0<t<1时,如图1,EF=2(1t),EH=(t22t3),
∵矩形EFGH为正方形,
∴EF=EH,即2(1t)=(t22t3),
整理得t24t1=0,解得t1=2+ (舍去),t2=2 (舍去);
当1<t<3时,如图2,EF=2(t1),EH=(t22t3),
∵矩形EFGH为正方形,
∴EF=EH,即2(t1)=(t22t3),
整理得t25=0,解得t1=,t2= (舍去),
此时正方形EFGH的边长为22;
当t>3时,EF=2(t1),EH=t22t3,
∵矩形EFGH为正方形,
∴EF=EH,即2(t1)=t22t3,
整理得t24t1=0,解得t1=2+,t2=2 (舍去),
此时正方形EFGH的边长为2+2,
综上所述正方形EFGH的边长为22或2+2;
(3)设P(x,x22x3),
当1<x<0时,
∵S△ABC=×4×3=6,
∴0<S△APC<6,
当0<x<3时,作PM∥y轴交AC于点M,如图3,
易得直线AC的解析式为y=x3,则M(x,x3),
∴PM=x3(x22x3)=x2+3x,
∴S△APC=×3(x2+3x)=x2+x=(x)2+,
当x=时,S△APC的面积的最大值为,即0<S△APC<,
综上所述,0<S△APC<6,
∴△PAC面积为整数时,它的值为1、2、3、4、5,即△PAC有5个.
科目:初中数学 来源: 题型:
【题目】观察下列等式,并探究
①
②
③
……
(1)写出第④个等式:______;
(2)某同学发现,四个连续自然数的积加上1后,结果都将是某一个整数的平方.当这四个数较大时可以进行简便计算,如:
.
请你猜想写出第n个等式,用含有n的代数式表示,并通过计算验证你的猜想.
(3)任何实数的平方都是非负数(即),一个非负数与一个正数的和必定是一个正数(即时,).根据以上的规律和方法试说明:无论x为什么实数,多项式的值永远都是正数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知某市2016年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.
(1)当x≥50时,求y关于x的函数关系式;
(2)若某企业2016年10月份的水费为620元,求该企业2016年10月份的用水量;
(3)为鼓励企业节约用水,该市自2017年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x超过80吨,则除按2016年收费标准收取水费外,超过80吨的部分每吨另加收元的污水处理费,若某企业2017年3月份的水费和污水处理费共600元,求这个企业3月份的用水量.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(1,a)是反比例函数的图象上一点,直线与反比例函数的图象的交点为点B、D,且B(3,﹣1),求:
(1)求反比例函数的解析式;
(2)求点D坐标,并直接写出y1>y2时x的取值范围;
(3)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店销售一种销售成本为每千克30元的水产品,据市场分析,若按每千克40元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,针对这种情况,请解答以下问题:
(1)当销售单价定为每千克45元时,计算月销售量和月销售利润;
(2)该商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年入夏以来,由于持续暴雨,某县遭受严重洪涝灾害,群众顿失家园。该县民政局为解决群众困难, 紧急组织了一批救灾帐篷和食品准备送到灾区。已知这批物资中,帐篷和食品共 640 件,且帐篷比食 品多 160 件。
(1)帐篷和食品各有多少件?
(2)现计划租用 A、B 两种货车共 16 辆,一次性将这批物资送到群众手中,已知 A 种货车可装帐蓬40 件和食品 10 件,B 种货车可装帐篷 20 件和食品 20 件,试通过计算帮助民政局设计几种运输 方案?
(3)在(2)条件下,A 种货 车每辆需付运费 800 元,B 种货车每辆需付运费 720 元,民政局应选择 哪种方案,才能使运输费用最少?最少费用是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆汽车从A地驶往B地,前路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h.
请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用一元一次方程解决的问题,并写出解答过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形的两条边分别在轴和轴上,已知点、点.
(1)若把矩形沿直线折叠,使点落在点处,直线与的交点分别为,求折痕的长;
(2)在(1)的条件下,点在轴上,在平面内是否存在点,使以为顶点的四边形是菱形?若存在,则请求出点的坐标;若不存在,请说明理由;
(3)如图,若为边上的一动点,在上取一点,将矩形绕点顺时针旋转一周,在旋转的过程中,的对应点为,请直接写出的最大值和最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE于G,BG=,则梯形AECD的周长为( )
A.22 B.23 C.24 D.25
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com