精英家教网 > 初中数学 > 题目详情
已知矩形纸片ABCD中,AB=2,BC=3.
操作:将矩形纸片沿EF折叠,使点B落在边CD上.
探究:
(1)如图1,若点B与点D重合,你认为△EDA1和△FDC全等吗?如果全等给出证明,如果不全等请说明理由;
(2)如图2,若点B与CD的中点重合,求△FCB1和△B1DG的周长之比.
精英家教网
分析:(1)根据ASA可以证明两个三角形全等;
(2)设CF=x,则BF=3-x,根据折叠的性质得B1F=BF=3-x,再进一步根据勾股定理求得x的值;根据相似三角形的判定可以证明△FCB1和△B1DG相似,再根据相似三角形的周长的比等于相似比进行求解.
解答:解:(1)全等.理由如下:
∵四边形ABCD是矩形,
∴∠A=∠B=∠C=∠ADC=90°,AB=CD,
由题意知:∠A=∠A1,∠B=∠A1DF=90°,AB=A1D
∴∠A1=∠C=90°,∠CDF+∠EDF=90°,
∴∠A1DE=∠CDF,
∴△EDA1≌△FDC(ASA);

(2)∵∠DG B1+∠D B1G=90°,∠D B1G+∠C B1F=90°,
∴∠DG B1=∠C B1F,
∵∠D=∠C=90°,
∴△FC B1∽△B1DG.
设FC=x,则B1F=BF=3-x,B1C=
1
2
DC=1,
∴x2+12=(3-x)2
x=
4
3

∵△FCB1∽△B1DG,
C△FCB1
CB1DG
=
FC
B1D
=
4
3
点评:此题综合运用了全等三角形的判定、相似三角形的判定及性质,综合性较强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知矩形纸片ABCD中,AD=6,AB=a(a<6),在BC边上取一点M,将△ABM沿AM折叠后点B恰好落在矩形ABCD的对称中心O处,则a的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.
(1)如果折痕FG分别与AD、AB交于点F、G(如图1),AF=
23
,求DE的长;
(2)如果折痕FG分别与CD、AB交于点F、G(如图2),△AED的外接圆与直线BC相切,求折痕FG的长.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知矩形纸片ABCD中,AB=3,BC=6,E在矩形ABCD的边AD上,点F在矩形ABCD的边BC上,且BF=5,把矩形纸片ABCD沿EF折叠,BF的对应线段FB′交边AD于点G.

(1)判断△EFG是何种特殊三角形,并证明你的结论.
(2)在折叠过程中,不重叠部分(阴影图形)的周长之和p会发生变化吗?若不变化,请求出p的值;若变化,请说明理由.
(3)当△EFG是锐角三角形时,求AE的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

①如图1,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C’处,折痕为EF,若∠ABE=20°,那么∠EFC’的度数为
125
125
°.
②如图2,已知矩形纸片ABCD,点E 是AB的中点,点G是BC上的一点,∠BEG>60°,现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连接AH,则与∠BEG相等的角的个数为
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知矩形纸片ABCD中,AB=4,BC=6.

(1)如图1,点E是BC边上的一点,BE=2,AE、BD交于点F.①求AF:FE的值;②求△BEF的面积;
(2)如图2,将矩形纸片沿MN折叠,使点B与边CD的中点重合,点A、B的对应点为A1、B1,A1B1与DN交于点G,求△MCB1和△B1DG的周长之比.

查看答案和解析>>

同步练习册答案