精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,AB=8,AD=6,点M为对角线AC上的一个动点(不与端点A,C重合),过点M作ME⊥AD,MF⊥DC,垂足分别为E,F,则四边形EMFD面积的最大值为(

A. 6 B. 12 C. 18 D. 24

【答案】B

【解析】

根据矩形的性质和判定可得四边形EBFM是矩形,根据相似三角形的判定和性质可得DF=EM=x,DE=FM=y,得到 根据矩形的面积公式得到四边形EMFD面积

再根据函数的最值问题即可求解.

∵四边形ABCD是矩形,

MEADMFDC

∴四边形EBFM是矩形;

DF=EM,DE=FM,FMAD,MECD

AEMADC

DF=EM=xDE=FM=y

四边形EMFD面积

x=4时,四边形EMFD面积的最大值为12.

故选:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知如图,矩形OABC的长OA=,宽OC=1,将△AOC沿AC翻折得△APC

1)求∠PCB的度数;

2)若PA两点在抛物线y=﹣x2+bx+c上,求bc的值,并说明点C在此抛物线上;

3)(2)中的抛物线与矩形OABCCB相交于点D,与x轴相交于另外一点E,若点Mx轴上的点,Ny轴上的点,以点EMDN为顶点的四边形是平行四边形,试求点MN的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.

(1)当t为何值时,AD=AB,并求出此时DE的长度;

(2)当△DEG与△ACB相似时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】方格纸中每个小正方形的边长都是单位1,OAB在平面直角坐标系中的位置如图所示.解答问题:

(1)请按要求对ABO作如下变换:

OAB向下平移2个单位,再向左平移3个单位得到O1A1B1

以点O为位似中心,位似比为2:1,将ABC在位似中心的异侧进行放大得到OA2B2

(2)写出点A1,A2的坐标:

(3)OA2B2的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=-x+3x轴、y轴分别交于A,B两点,抛物线y=-x2+bx+c经过B点,且与x轴交于C,D两点(点C在左侧),且C(-3,0).

(1)求抛物线的解析式;

(2)平移直线AB,使得平移后的直线与抛物线分别交于点D,E,与y轴交于点F,连接CE,CF,求△CEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,AB=AC,DEBC,点F在边AC上,DFBE相交于点G,且∠EDF=ABE.

求证:(1)DEF∽△BDE;(2)DGDF=DBEF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是(  )

A. a≤﹣1≤a< B. ≤a<

C. a≤a> D. a≤﹣1a≥

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个四边形被一条对角线分割成两个三角形,如果被分割的两个三角形相似,我们把这条对角线称为该四边形的为相似对角线。

(1)如图1,正方形ABCD的边长为4,EAD的中点,AF=1,连结CE,CF,求证:EF为四边形AECF的相似对角线。

(2)在四边形ABCD,BAD=120°,AB=3,AC=,AC平分∠BAD,且AC是四边形ABCD的相似对角线,求BD的长。

(3)如图2,在矩形ABCD,AB=6,BC=4,E是线段AB(不取端点A,B)上的一个动点,F是射线AD上的一个动点,EF是四边形AECF的相似对角线,BE的长.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中每个小正方形的边长都是1个单位长度,RtABC的三个顶点A(-2,2),B(0,5),C(0,2).

(1)ABC以点C为旋转中心旋转180°,得到A1B1C,请画出A1B1C的图形.

(2)平移ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的A2B2C2的图形.

(3)若将A1B1C绕某一点旋转可得到A2B2C2,请直接写出旋转中心的坐标.

查看答案和解析>>

同步练习册答案