精英家教网 > 初中数学 > 题目详情
如图,六边形ABCDEF内接于半径为r(常数)的⊙O,其中AD为直径,且AB=CD=DE=FA.
(1)当∠BAD=75°时,求的长;
(2)求证:BC∥AD∥FE;
(3)设AB=x,求六边形ABCDEF的周长L关于x的函数关系式,并指出x为何值时,L取得最大值.

【答案】分析:(1)本题要靠辅助线的帮助.连接OB、OC,证明∠COD=∠AOB即可.
(2)连接BD,由(1)得BC∥AD,EF∥AD推出BC∥AD∥FE.
(3)过点B作BM⊥AD于M,由(2)得出四边形ABCD为等腰梯形,证明△BAM∽△DAB.得出AM、BC、EF的关系然后可求出L的最大值.
解答:(1)解:连接OB、OC,由∠BAD=75°,OA=OB知∠AOB=30°,
∵AB=CD,∴∠COD=∠AOB=30°,
∴∠BOC=120°,(2分)
的长为.(3分)

(2)证明:连接BD,∵AB=CD,
∴弧AB=弧CD,
∴∠ADB=∠CBD,∴BC∥AD,(5分)
同理EF∥AD,从而BC∥AD∥FE.(6分)

(3)解:过点B作BM⊥AD于M,由(2)知四边形ABCD为等腰梯形,从而BC=AD-2AM=2r-2AM.(7分)
∵AD为直径,∴∠ABD=90°,易得△BAM∽△DAB,∴AM:AB=AB:AD,
∴AM==,∴BC=2r-,同理EF=2r-,(8分)
∴L=4x+2(2r-)=-x2+4x+4r=-(x-r)2+6r,其中0<x<,(9分)
∴当x=r时,L取得最大值6r.(10分)
点评:本题考查的是相似三角形的性质,弧长的计算以及二次函数的综合运用,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图①:四边形ABCD为正方形,M、N分别是BC和CD中点,AM与BN交于点P,
(1)请你用几何变换的观点写出△BCN是△ABM经过什么几何变换得来的;
(2)观察图①,图中是否存在一个四边形,这个四边形的面积与△APB的面积相等?写出你的结论.(不必证明)
(3)如图②:六边形ABCDEF为正六边形,M、N分别是CD和DE的中点,AM与BN交于点P,问:你在(2)中所得的结论是否成立?若成立,写出结论并证明,若不成立请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD是由四个边长为l的正六边形所围住,则四边形ABCD的面积是(  )
A、
3
4
B、
3
2
C、1
D、2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:四边形ABCD中,AD∥BC,∠B=∠C,AD=a(a>0),BC=8,AD、BC间的距离为2
3
,有一边长为2的等边△EFG,在四边形ABCD内作任意运动,在运动过程中始终保持EF∥BC.记△EFG在四边形ABCD内部运动过程中“能够扫到的部分”的面积为S.
(1)如图①所示,当a=8时,△EFG在四边形ABCD内部运动过程中“能够扫到的部分”即为六边形HIBCJK,则S=
 

(2)如图②所示,当a=10时,求S的值;
(3)如图③所示,当a=2时,求S的值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的内角和为2×180°=360°,五边形ABCDE的内角和为3×180°=540°,…由此可见:
(1)六边形的内角和为
720
720
度;
(2)n边形的内角和为
(n-2)×180
(n-2)×180
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是由四个边长为1的正六边形所围住,则四边形ABCD的面积是(     )
A.1B.2C.D.

查看答案和解析>>

同步练习册答案