【题目】如图,P是抛物线y=2(x﹣2)2对称轴上的一个动点,直线x=t平行y轴,分别与y=x、抛物线交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t= .
【答案】或1或3
【解析】
试题分析:依题意,y=2x2﹣8x+8,设A(t,t),B(t,2t2﹣8t+8),则AB=|t﹣(2t2﹣8t+8)|=|2t2﹣9t+8|,当△ABP是以点A为直角顶点的等腰直角三角形时,则∠PAB=90°,PA=AB=|t﹣2|;当△ABP是以点B为直角顶点的等腰直角三角形时,则∠PBA=90°,PB=AB=|t﹣2|;分别列方程求k的值.
试题解析:∵y=2(x﹣2)2 ∴y=2x2﹣8x+8,
∵直线x=t分别与直线y=x、抛物线y=2x2﹣8x+8交于点A、B两点,
∴设A(t,t),B(t,2t2﹣8t+8),AB=|t﹣(2t2﹣8t+8)|=|2t2﹣9t+8|,
①当△ABP是以点A为直角顶点的等腰直角三角形时,∠PAB=90°,此时PA=AB=|t﹣2|,
即|2t2﹣9t+8|=|t﹣2|, ∴2t2﹣9t+8=t﹣2,或2t2﹣9t+8=2﹣t, 解得t=或1或3;
②当△ABP是以点B为直角顶点的等腰直角三角形时,则∠PBA=90°,此时PB=AB=|t﹣2|,结果同上.
科目:初中数学 来源: 题型:
【题目】如果A和B都是5次多项式,则下面说法正确的是( )
A.A﹣B一定是多项式
B.A﹣B是次数不低于5的整式
C.A+B一定是单项式
D.A+B是次数不高于5的整式
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】钓鱼岛是中国的固有领土,面积约4400000平方米,数据4400000用科学记数法表示应为( )
A.44×105
B.0.44×107
C.4.4×106
D.4.4×105
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,图②是边长为m-n的正方形.
(1)请用图①中四个小长方形和图②中的正方形拼成一个大正方形,画出示意图(要求连接处既没有重叠,也没有空隙);
(2)请用两种不同的方法列代数式表示(1)中拼得的大正方形的面积;
(3)请直接写出(m+n)2,(m-n)2,mn这三个代数式之间的等量关系;
(4)根据(4)中的等量关系,解决如下问题:若a+b=6,ab=4,求(a-b)2的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点.
(1)求此抛物线的解析式;
(2)求C、D两点坐标及△BCD的面积;
(3)若点P在x轴上方的抛物线上,满足S△PCD=S△BCD,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF.
(1)求证:AD平分∠BAC;
(2)猜想写出AB+AC与AE之间的数量关系并给予证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠AOB, OE平分∠AOC, OF平分∠BOC.
(1)若∠AOB是直角,∠BOC=60°,求∠EOF的度数;
(2)猜想∠EOF与∠AOB的数量关系;
(3)若∠AOB+∠EOF=156°,则∠EOF是多少度?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com