精英家教网 > 初中数学 > 题目详情
(2005•武汉)如图,在平面直角坐标系中,点O1的坐标为(-4,0),以点O1为圆心,8为半径的圆与x轴交于A、B两点,过点A作直线l与x轴负方向相交成60°角.以点O2(13,5)为圆心的圆与x轴相切于点D.

(1)求直线l的解析式;
(2)将⊙O2以每秒1个单位的速度沿x轴向左平移,同时直线l沿x轴向右平移,当⊙O2第一次与⊙O1相切时,直线l也恰好与⊙O2第一次相切,求直线l平移的速度;
(3)将⊙O2沿x轴向右平移,在平移的过程中与x轴相切于点E,EG为⊙O2的直径,过点A作⊙O2的切线,切⊙O2于另一点F,连接AO2、FG,那么FG•AO2的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围.
【答案】分析:因为⊙O2不断移动的同时,直线l也在进行着移动,而圆与圆的位置关系有:相离(外离,内含),相交、相切(外切、内切〕,直线和圆的位置关系有:相交、相切、相离,所以这样一来,我们在分析过程中不能忽略所有的可能情况.
解答:解:(1)设直线l与y轴交于点N,
直线l经过点A(-12,0),
∵∠OAN=60°,
∴tan30°=
解得:NO=12
故与y轴交于点(0,),
设解析式为y=kx+b,则b=,k=
∴直线l的解析式为y=-x-12

(2)⊙O2第一次与⊙O1相切时,向左平移了5秒(5个单位)如图所示.
在5秒内直线l平移的距离计算:
8+12-=20-
所以直线l平移的速度为每秒(4-)个单位;

(3)其值不变.
∵Rt△EFG∽Rt△AEO2
于是可得:(其中O2E=EG)
所以FG•AO2=EG2=50,即其值不变.
点评:本题综合考查了直线与圆、圆与圆的位置关系,全等三角形的判定,图形的平移变换等多个知识点.考查学生综合运用数学的能力.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《图形的平移》(01)(解析版) 题型:解答题

(2005•武汉)如图,在平面直角坐标系中,点O1的坐标为(-4,0),以点O1为圆心,8为半径的圆与x轴交于A、B两点,过点A作直线l与x轴负方向相交成60°角.以点O2(13,5)为圆心的圆与x轴相切于点D.

(1)求直线l的解析式;
(2)将⊙O2以每秒1个单位的速度沿x轴向左平移,同时直线l沿x轴向右平移,当⊙O2第一次与⊙O1相切时,直线l也恰好与⊙O2第一次相切,求直线l平移的速度;
(3)将⊙O2沿x轴向右平移,在平移的过程中与x轴相切于点E,EG为⊙O2的直径,过点A作⊙O2的切线,切⊙O2于另一点F,连接AO2、FG,那么FG•AO2的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:解答题

(2005•武汉)如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系.y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.
(1)求抛物线的解析式;
(2)如果该隧道内设双行道,现有一辆货运卡车高4.2m,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.

查看答案和解析>>

科目:初中数学 来源:2009年文星镇中考模拟试卷(解析版) 题型:解答题

(2005•武汉)如图,在平面直角坐标系中,点O1的坐标为(-4,0),以点O1为圆心,8为半径的圆与x轴交于A、B两点,过点A作直线l与x轴负方向相交成60°角.以点O2(13,5)为圆心的圆与x轴相切于点D.

(1)求直线l的解析式;
(2)将⊙O2以每秒1个单位的速度沿x轴向左平移,同时直线l沿x轴向右平移,当⊙O2第一次与⊙O1相切时,直线l也恰好与⊙O2第一次相切,求直线l平移的速度;
(3)将⊙O2沿x轴向右平移,在平移的过程中与x轴相切于点E,EG为⊙O2的直径,过点A作⊙O2的切线,切⊙O2于另一点F,连接AO2、FG,那么FG•AO2的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围.

查看答案和解析>>

科目:初中数学 来源:2005年湖北省武汉市中考数学试卷(课标卷)(解析版) 题型:解答题

(2005•武汉)如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系.y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.
(1)求抛物线的解析式;
(2)如果该隧道内设双行道,现有一辆货运卡车高4.2m,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.

查看答案和解析>>

科目:初中数学 来源:2005年湖北省武汉市中考数学试卷(课标卷)(解析版) 题型:解答题

(2005•武汉)如图,在平面直角坐标系中,点O1的坐标为(-4,0),以点O1为圆心,8为半径的圆与x轴交于A、B两点,过点A作直线l与x轴负方向相交成60°角.以点O2(13,5)为圆心的圆与x轴相切于点D.

(1)求直线l的解析式;
(2)将⊙O2以每秒1个单位的速度沿x轴向左平移,同时直线l沿x轴向右平移,当⊙O2第一次与⊙O1相切时,直线l也恰好与⊙O2第一次相切,求直线l平移的速度;
(3)将⊙O2沿x轴向右平移,在平移的过程中与x轴相切于点E,EG为⊙O2的直径,过点A作⊙O2的切线,切⊙O2于另一点F,连接AO2、FG,那么FG•AO2的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围.

查看答案和解析>>

同步练习册答案