精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,在Rt△ABC中,∠A=90°,CD平分∠ACB交边AB于点D,DE⊥BC垂足为E,AD=
12
BD.求证:BE=CE.
分析:根据角平分线的性质,即可证得AD=DE,则在直角△BDE中,即可得到BD=2DE,则∠B=30°,根据角平分线的定义求得∠DCE的度数,根据等角对等边即可证得△BDC是等腰三角形,依据三线合一定理,即可证得.
解答:证明:∵∠A=90°,DE⊥BC,CD平分∠ACB,
∴AD=DE(1分)
∵AD=
1
2
BD,
∴DE=
1
2
BD.(1分)
在Rt△BDE中,
∵DE=
1
2
BD,
∴∠B=30°.(1分)
在Rt△ABC中,
∵∠A=90°,∠B=30°,
∴∠ACB=60°.(1分)
∵CD平分∠ACB,
∴∠BCD=
1
2
∠ACB=30°.(1分)
∴∠BCD=∠B,
∴BD=CD.(1分)
∵DE⊥BC,
∴BE=CE.(1分)
点评:本题考查了角平分线的性质定理,等角对等边,三线合一定理,关键是求得∠B的度数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,过点B作BD∥AC,且BD=2AC,连接AD.试判断△ABD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•陕西)已知,如图,在Rt△ABC中,∠C=90°,以AC为直径的⊙O交斜边AB于E,OD∥AB.求证:①ED是⊙O的切线;②2DE2=BE•OD.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•丰台区一模)已知:如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连结DE.
(1)求证:DE与⊙O相切;
(2)连结OE,若cos∠BAD=
3
5
,BE=
14
3
,求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y.
(1)求出cosB的值;
(2)用含y的代数式表示AE;
(3)求y与x之间的函数关系式,并求出x的取值范围;
(4)设四边形DECF的面积为S,求出S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,在Rt△ABC中,∠C=90°,AC=15,BC=20,求斜边AB上的高CD.

查看答案和解析>>

同步练习册答案