精英家教网 > 初中数学 > 题目详情
17.如图,已知E、F分别为平行四边形ABCD的对边AD、BC上的点,且DE=BF,EM⊥AC于M,FN⊥AC于N,EF交AC于点O,求证:
(1)EM=FN;   
(2)EF与MN互相平分.

分析 (1)由平行四边形的性质得出AD∥BC,AD=BC,得出∠EAM=∠FCN,AE=CF,由AAS证明△AEM≌△CFN,得出对应边相等即可;
(2)连接EN、FM,求出EM=FN,EM∥FN,得出平行四边形EMFN,根据平行四边形的性质得出即可.

解答 证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,
∴∠EAM=∠FCN,
∵DE=BF,
∴AE=CF,∵EM⊥AC于M,FN⊥AC于N,∴∠AME=∠CNF=90°,
在△AEM和△CFN中,$\left\{\begin{array}{l}{∠EAM=∠∠FCN}&{\;}\\{∠AME=∠CNF}&{\;}\\{AE=CF}&{\;}\end{array}\right.$,
∴△AEM≌△CFN(AAS),
∴EM=FN;
(2)连接EN、FM,如图所示:
∵EM⊥AC,FN⊥AC,
∴∠AME=∠EMN=∠FNC=∠FNM=90°,
∴EM∥FN,
又∵由(1)得EM=FN,
∴四边形EMFN是平行四边形,
∴EF与MN互相平分.

点评 本题考查了平行四边形的性质和判定,全等三角形的性质和判定的应用;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.如图,已知△ABC的三个顶点的坐标分别为A(-2,3)、B(-6,0)、C(-1,0).
(1)将△ABC沿y轴翻折,则翻折后点A的对应点的坐标是(2,3).
(2)作出△ABC关于x轴对称的图形△A1B1C1,画△A1B1C1,并直接写出点A1的坐标.
(3)若以D、B、C为顶点的三角形与△ABC全等,请画出所有符合条件的△DBC(点D与点A重合除外),并直接写出点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.甲、乙两地之间的距离为900km,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.已知快车的速度是慢车的2倍,慢车12小时到达甲地.
(1)慢车速度为每小时75km;快车的速度为每小时150km;
(2)当两车相距300km时,两车行驶了$\frac{8}{3}$或$\frac{16}{3}$小时;
(3)若慢车出发3小时后,第二列快车从乙地出发驶往甲地,速度与第一列快车相同.在第二列快车行驶的过程中,当它和慢车相距150km时,求两列快车之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知A=2x2+xy+3y-1,B=x2-xy.
(1)若(x+2)2+|y-3|=0,求A-2B的值;
(2)若A-2B的值与y的值无关,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图所示,在△ABC中,∠BAC=90°,AB⊥AC,AB=3,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是4.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.把所有正偶数从小到大排列,并按如下规律分组:(2),(4,6,8),(10,12,14,16,18),(20,22,24,26,28,30,32),…,现有等式Am=(i,j)表示正偶数m是第i组第j个数(从左往右数),如A8=(2,3),则A2016=(  )
A.(31,50)B.(32,47)C.(33,46)D.(34,42)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.在实数-$\frac{1}{3}$、$\sqrt{9}$、$\frac{π}{2}$、$\root{3}{2}$中,无理数的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.[实际情境]
甲、乙两人从相距4千米的两地同时、同向出发,甲每小时走6千米,乙每小时走4千米,小狗随甲一起出发,每小时跑12千米.小狗遇到乙的时候它就往甲这边跑,遇到甲时又往乙这边跑,遇到乙的时候再往甲这边跑…就这样一直跑下去.
[数学研究]
如图,折线A-B-C、A-D-E分别表示甲、小狗在行进过程中,离乙的路程y(km)与甲行进时间x(h)之间的部分函数图象.
(1)写出D点坐标的实际意义;
(2)求线段AB对应的函数表达式;
(3)求点E的坐标;
(4)小狗从出发到它折返后第一次与甲相遇的过程中,直接写出x为何值时,它离乙的路程与它离甲的路程相等?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,抛物线y=ax2+bx-2(a≠0)过点A(-1,0),B(4,0),与y轴交与点C,顶点为D.
(1)求抛物线的解析式与顶点D的坐标;
(2)点E从A点出发,沿x轴向B点运动并到点B停止(点E与点A,B不重合)过点E作直线l平行BD,交直线AD于点F,设AE的长为m,连接DE,求△DEF面积的最大值及此时点E到BD的距离;
(3)试探究:
①在抛物线的对称轴上是否存在点M,使得MA+MC的值最小?若存在请求出M的坐标,若不存在,请说明理由;
②在抛物线的对称轴上是否存在点N,使丨NA-NC丨的值最大?若存在请求出N的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案