11£®Èçͼ£¬OQÊÇ¡ÏBOCµÄƽ·ÖÏߣ¬
£¨1£©ÓÃÖ±³ßºÍÔ²¹æ×÷¡ÏAOBµÄƽ·ÖÏßOP£®£¨²»Ð´×÷·¨£¬±£Áô×÷ͼºÛ¼££©
£¨2£©½áºÏͼÐΣ¬²Â²â¡ÏPOQÓë¡ÏAOCÖ®¼äµÄÊýÁ¿¹Øϵ£¬È»ºóÖð²½Ìî¿Õ£®
½â£º¡ÏPOQÓë¡ÏAOCÖ®¼äµÄÊýÁ¿¹ØϵÊÇ£º¡ÏPOQ=$\frac{1}{2}¡ÏAOC$£®
ÒòΪOPÊÇ¡ÏAOBµÄƽ·ÖÏߣ¬
ËùÒÔ¡ÏPOB=$\frac{1}{2}$¡ÏAOB£¬
ͬÀí£¬¡ÏBOQ=$\frac{1}{2}$¡ÏBOC£¬
ÓÚÊÇ¡ÏPOQ=¡ÏPOB+¡ÏBOQ=$\frac{1}{2}$¡ÏAOB+$\frac{1}{2}$¡ÏBOC=$\frac{1}{2}$£¨¡ÏAOB+¡ÏBOC£©=$\frac{1}{2}$¡ÏAOC£®

·ÖÎö £¨1£©¸ù¾Ý½Çƽ·ÖÏߵij߹æ×÷ͼ¼´¿ÉµÃ£»
£¨2£©ÓÉOPƽ·Ö¡ÏAOBÖª$¡ÏPOB=\frac{1}{2}$¡ÏAOB¡¢ÓÉOQƽ·Ö¡ÏBOCÖª¡ÏBOQ=$\frac{1}{2}$¡ÏBOC£¬¸ù¾Ý¡ÏPOQ=¡ÏPOB+¡ÏBOQ¿ÉµÃ´ð°¸£®

½â´ð ½â£º£¨1£©Èçͼ£¬OP¼´ÎªËùÇó£º


£¨2£©¡ÏPOQÓë¡ÏAOCÖ®¼äµÄÊýÁ¿¹ØϵÊÇ£º¡ÏPOQ=$\frac{1}{2}¡ÏAOC$£¬
ÒòΪOPÊÇ¡ÏAOBµÄƽ·ÖÏߣ¬
ËùÒÔ$¡ÏPOB=\frac{1}{2}$¡ÏAOB£¬
ͬÀí£¬$¡ÏBOQ=\frac{1}{2}$¡ÏBOC£¬
ÓÚÊÇ¡ÏPOQ=¡ÏPOB+¡ÏBOQ=$\frac{1}{2}$¡ÏAOB$+\frac{1}{2}$¡ÏBOC=$\frac{1}{2}$£¨¡ÏAOB+¡ÏBOC£©=$\frac{1}{2}$¡ÏAOC£¬
¹Ê´ð°¸Îª£º¡ÏPOB¡¢¡ÏBOQ¡¢¡ÏAOB¡¢¡ÏBOC¡¢¡ÏAOB¡¢¡ÏBOC¡¢¡ÏAOC£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é×÷ͼ-³ß¹æ×÷ͼ¼°½Çƽ·ÖÏߵĶ¨Ò壬½âÌâµÄ¹Ø¼üÊÇÊìÁ·ÕÆÎÕ½Çƽ·ÖÏߵij߹æ×÷ͼ¼°½Çƽ·ÖÏߵĶ¨ÒåºÍÐÔÖÊ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®µ÷²éÆßÄ꼶ij°à50ÃûѧÉú¶ÔµØÕð֪ʶµÄÁ˽⣬ÊʺϲÉÓõĵ÷²é·½Ê½ÊÇÈ«Ãæµ÷²é£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®°ÑÏÂÁÐÃüÌâ¸Äд³É¡°Èç¹û¡­£¬ÄÇô¡­¡±
£¨1£©Í¬ÅÔÄڽǻ¥²¹£¬Á½Ö±ÏßƽÐУ»
£¨2£©a+b=0£¬ÔòaÓëb»¥ÎªÏà·´Êý£»
£¨3£©Æ½ÐÐÓÚͬһÌõÖ±ÏßµÄÁ½ÌõÖ±ÏßƽÐУ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÔÚ¡÷ABCÖУ¬AB=6£¬AC=4£¬DÊÇÏ߶ÎABÉϵÄÒ»µã£¬ÇÒAD=2£¬ÈôEÊÇÏ߶ÎACÉϵÄÒ»µã£¬ÇÒ¡÷ADEÓë¡÷ABCÏàËÆ£¬ÔòAE=$\frac{4}{3}$»ò3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Èçͼ£¬CÊÇÏ߶ÎABÉÏÈÎÒâÒ»µã£¬D¡¢E·Ö±ðÊÇÏ߶ÎBC£¬ACµÄÖе㣬ÈôAB=14£¬ÔòDEµÄ³¤Îª7£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®½â²»µÈʽ×飺$\left\{\begin{array}{l}{x-3¡Ü0£¬¢Ù}\\{\frac{3x+1}{12}£¼\frac{2x-1}{3}£®¢Ú}\end{array}\right.$²¢°Ñ²»µÈʽ×éµÄ½â¼¯±íʾÔÚÊýÖáÉÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖª£ºÈçͼ£¬Æ½ÐÐËıßÐÎABCD£¬E¡¢F¡¢G¡¢H·Ö±ðÊÇAB¡¢BC¡¢CD¡¢ADÉϵĵ㣬ÇÒAE=CG£¬BF=DH£®
£¨1£©Ð´³öÓë$\overrightarrow{AB}$Ïà·´µÄÏòÁ¿£»
£¨2£©Ð´³öÓë$\overrightarrow{FG}$ƽÐеÄÏòÁ¿£»
£¨3£©ÔÚͼÖÐÇó×÷$\overrightarrow{EF}$-$\overrightarrow{EH}$£®£¨²»ÒªÇóд³ö×÷·¨£¬Ö»Ðèд³ö½áÂÛ¼´¿É£®£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖª£ºÈçͼ£¬ÔÚËıßÐÎABCDÖУ¬AB=3£¬BC=4£¬AD¡ÎBC£¬¡ÏADB=90¡ã£¬cosA=$\frac{1}{3}$£®
Ç󣺣¨1£©DCµÄ³¤£»
£¨2£©Èç¹ûµãEΪCDµÄÖе㣬Áª½áBE£¬Çó¡ÏEBCµÄÕýÇÐÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÏÂÁÐʽ×ÓÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®x-£¨y+z£©=x+y-zB£®-£¨x-y-z£©=-x+y-z
C£®a-2£¨b+c£©=a-2b-cD£®-£¨a-b£©-2£¨-c£©=-a+b+2c

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸