精英家教网 > 初中数学 > 题目详情
16.以下列各组数据为三角形的三边,能构成直角三角形的是(  )
A.4cm,8cm,7cmB.2cm,2cm,2cmC.2cm,2cm,4cmD.6cm,8cm,10cm

分析 由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.

解答 解:A、42+72≠82,故不能构成直角三角形;
B、22+22≠22,故不能构成直角三角形;
C、2+2=4,故不能构成三角形,不能构成直角三角形;
D、62+82=102,故能构成直角三角形.
故选D.

点评 本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.勾股定理的逆定理:若三角形三边满足a2+b2=c2,那么这个三角形是直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.如图,已知直线l:y=-2x+2与x轴、y轴交于A、B两点,平移直线l交y=$\frac{k}{x}$于C、D两点,且CD=2AB,若AC=5,求D点坐标及k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,AB为⊙O直径,点D为AB下方⊙O上一点,点C为弧ABD中点,连接CD,CA.
(1)求证:∠ABD=2∠BDC;
(2)过点C作CE⊥AB于H,交AD于E,求证:EA=EC;
(3)在(2)的条件下,若OH=5,AD=24,求线段DE的长

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,将连续的奇数1,3,5,7,…按图1中的方式排成一个数表,用一个十字框框住5个数,这样框出的任意5个数(如图2)分别用a,b,c,d,x表示.
(1)若x=17,则a+b+c+d=68.
(2)用含x的式子分别表示数a,b,c,d.
(3)直接写出a,b,c,d,x这5个数之间的一个等量关系:a+b+c+d=4x.
(4)设M=a+b+c+d+x,判断M的值能否等于2010,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.先化简再求值
(1)(3a+b)2-(3a-b)(3a+b)-5b(a-b),其中a=1$\frac{3}{4}$,b=-$\frac{2}{7}$
(2)4(a+2)2-6(a+3)(a-3)+3(a-1)2,其中a=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算:
(1)(-1)2017+$\sqrt{4}$-|-$\sqrt{2}$|-(π-2016)0
(2)($\sqrt{6}$-2$\sqrt{15}$)×$\sqrt{3}$-6$\sqrt{\frac{1}{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知△ABC中,AB=AC=6$\sqrt{2}$,BC=12.点P从点B出发沿线段BA移动,同时点Q从点C出发沿线段AC的延长线移动,点P、Q移动的速度相同,PQ与直线BC相交于点D.

(1)如图①,当点P为AB的中点时,求CD的长;
(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,设BE+CD=λ,λ是否为常数?若是请求出λ的值,若不是请说明理由.
(3)如图③,E为BC的中点,直线CH垂直于直线AD,垂足为点H,交AE的延长线于点M;直线BF垂直于直线AD,垂足为F;找出图中与BD相等的线段,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.关于x的一元二次方程kx2-$\sqrt{4k+1}$x+2=0有两个不相等的实数根,那么k的取值范围是-$\frac{1}{4}$≤k<$\frac{1}{4}$且k≠0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,正方形ABCD中,P为CD上一动点,过C作CM⊥AP交AP于M并延长AP,使MN=AM,连BD交AN于E,连CN.
(1)求证:CN=BD;
(2)连BM、DM,试探究BM、DM与MN之间的数量关系.

查看答案和解析>>

同步练习册答案