精英家教网 > 初中数学 > 题目详情
如图,已知AB∥CD,猜想图1、图2、图3中∠B,∠BED,∠D之间分别有什么关系?请分别用等式表示出它们的关系,并证明.
图1:∠B+∠D=∠BED,图2:∠B-∠D=∠BED,∠D=∠B+∠DEB

试题分析:图1:过点E作EF∥AB.运用平行线的性质解答;
图2:根据平行线的性质得∠B=∠BFD,再运用三角形的外角性质解答;
图3:根据平行线的性质得∠B=∠CFE,再运用三角形的外角性质解答.
图1:∠B+∠D=∠BED,图2:∠B-∠D=∠BED,∠D=∠B+∠DEB

在图1中,有∠BED=∠B+∠D.
证明:过点E作EF∥AB.
∵AB∥CD,
∴EF∥CD.
∴∠B=∠BEF,∠D=∠DEF.
∴∠BED=∠BEF+∠DEF=∠B+∠D.
点评:解题的关键是读懂题意及图形特征,正确作出辅助线,运用平行线的性质及三角形的外角的性质解题.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,等腰△ABC的底边长为8cm,腰长为5cm,一动点P在底边上从B向C以0.25cm/s的速度移动,请你探究:当P运动几秒时,P点与顶点A的连线PA与腰垂直。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:点C在线段BD上,AB∥ED,∠A=∠1,∠E=∠2.

(1)若∠B=40°,求∠1、∠2的度数;
(2)判断AC与CE的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

△ABC中,AB=9,BC=2,周长是偶数,则AC=     

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如下图,在△ABC中,AB=8,BC=6,AC的垂直平分线MN交AB、AC于点M、N。则△BCM的周长为_________。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图甲,在中,为锐角,点为射线上一点,连接,以为一边且在的右侧作正方形.解答下列问题:

(1)如果
①当点在线段上时(与点不重合),如图乙,线段之间的位置关系为    ,数量关系为           
②当点在线段的延长线时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果,点在线段上运动.试探究:当满足一个什么条件时,(点重合除外)?画出图形,并说明理由.(画图不写作法).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一个三角形的两条边长分别是1㎝和2㎝,一个内角为40°.
(1)请你在下图中画出一个满足题设条件的三角形;

(2)你是否还能画出既满足题设条件又与(1)中所画的三角形不全等的三角形?若能,用“尺规作图”作出所有这样的三角形;若不能,请说明理由;
(3)如果将题设条件改为“三角形的两条边长分别是3㎝和4㎝,一个内角为40°,那么满足这一条件,且彼此不全等的三角形共有     个.
(请在你画出的图中标出已知角的度数和已知边的长度,“尺规作图”不要求写作法,但要保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线AC∥BD,连结AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连结PA、PB,构成∠PAC、∠APB、∠PBD三个角. (提示: 有公共端点的两条重合的射线所组成的角是0°)

(1)当动点P落在第①部分时,有∠APB=∠PAC+∠PBD,请说明理由;
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?若不成立,试写出∠PAC、∠APB、∠PBD三个角的关系(无需说明理由);
(3)当动点P在第③部分时,探究∠PAC、∠APB、∠PBD之间的关系,写出你发现的一个结论并加以说明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在△ABC中,AD为BC边上的中线,若AB=6,AC=4,设AD=x,则x的取值范围是(   )
A.0<x<10B.2<x<8 C.1<x<5 D.2<x<10

 

查看答案和解析>>

同步练习册答案