精英家教网 > 初中数学 > 题目详情
17.如图,已知箭头的方向是水流的方向,一艘游艇从江心岛的右侧A点逆流航行3小时到达B点后,又继续顺流航行2.5小时到达C点,总共行驶了208千米,已知游艇在静水中的速度是38千米/小时.
(1)求水流的速度;
(2)由于AC段在建桥,游艇用同样的速度沿原路返回共需要多少时间.(结果保留一位小数)

分析 (1)设水流速度为x千米/小时,则顺流航行速度为(38+x)千米/小时,逆流航行的速度为(38-x)千米/小时,根据路程=速度×时间即可得出关于x的一元一次方程,解之即可得出结论;
(2)根据路程=速度×时间分别算出AB、BC段的路程,再根据时间=路程÷速度即可得出返回所需时间.

解答 解:(1)设水流速度为x千米/小时,则顺流航行速度为(38+x)千米/小时,逆流航行的速度为(38-x)千米/小时,
根据题意得:3(38-x)+2.5(38+x)=208,
解得:x=2.
答:水流的速度为2千米/小时.
(2)由(1)可知,顺流航行速度为40千米/小时,逆流航行的速度为36千米/小时.
AB段的路程为3×36=108(千米),
BC段的路程为2.5×40=100(千米),
故原路返回时间为:$\frac{100}{36}$+$\frac{108}{40}$≈2.8+2.7=5.5(小时).
答:游艇用同样的速度原路返回大约需要5.5小时.

点评 本题考查了一元一次方程的应用,解题的关键是:(1)根据路程=速度×时间列出关于x的一元一次方程;(2)根据路程=速度×时间分别算出AB、BC段的路程.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.已知抛物线经过点A(-1,0),B(3,0),C(1,4),与y轴交于点E.
(1)求抛物线的解析式
(2)点F在第三象限的抛物线上,且S△BEF=15,求点F的坐标
(3)点P是x轴上一个动点,过P作直线l∥AE交抛物线于点Q,若以A,P,Q,E为顶点的四边形是平行四边形,请直接写出符合条件的点Q的坐标;如果没有,请通过计算说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.在平面直角坐标系中,点A(-4,0),B(0,3),将线段AB向右平移m(m为正数)个单位向下平移1个单位长度到CD,点A、B的对应点分别为C、D.
(1)直接写出点C(-4+m,-1),D(m,2)(用含m的式子表示);
(2)连接AC、AD,若三角形ACD面积是三角形ABO面积的2倍,求m的值;
(3)如图2,在线段OA上取一点E(不与O、A重合),F为y轴负半轴上一点,且FD平分∠CDE,若∠ABE=∠DEO,∠BED=α,求∠ABE+2∠BFD的度数(结果用含α的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,2016年里约奥运会上,某运动员在10米跳台跳水比赛时估测身体(看成一点)在空中的运动路线是抛物线y=-$\frac{25}{6}$x2+$\frac{10}{3}$x(图中标出的数据为已知条件),运动员在空中运动的最大高度离水面为$10\frac{2}{3}$米.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.关于x的方程2x+a=9的解是x=4,则a=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.汽车公司有甲、乙两种货车可供租用,现有一批货物要运往某地,货主准备租用该公司货车,已知以往甲、乙两种货车运货情况如表:
第一次第二次
甲种货车(辆)25
乙种货车(辆)36
累计运货(吨)1328
(1)甲、乙两种货车每辆可装多少吨货物?
(2)若货主需要租用该公司的甲种货车8辆,乙种货车6辆,刚好运完这批货物,如按每吨付运费50元,则货主应付运费总额为多少元?
(3)若货主共有20吨货,计划租用该公司的货车正好(每辆车都满载)把这批货运完,该汽车公司共有哪几种运货方案?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.尺规作图特有的魅力曾使无数人沉湎其中,连当年叱咤风云的拿破仑也不例外,我们可以只用圆规将圆等分.例如可将圆6等分,如图只需在⊙O上任取点A,从点A开始,以⊙O的半径为半径,在⊙O上依次截取点B,C,D,E,F.从而点A,B,C,D,E,F把⊙O六等分.下列可以只用圆规等分的是(  )
①两等分    ②三等分     ③四等分       ④五等分.
A.B.①②C.①②③D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列计算正确的是(  )
A.3$\sqrt{3}$×5$\sqrt{3}$=15$\sqrt{3}$B.3$\sqrt{2}$$+2\sqrt{3}$=5$\sqrt{6}$C.$\sqrt{8}$$-\sqrt{6}$=$\sqrt{2}$D.$\sqrt{60}$$÷\sqrt{5}$=2$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,△ABC中,∠B=90°,点D在射线BC上运动,DE⊥AD交射线AC于点E.
(1)如图1,若∠BAC=60°,当AD平分∠BAC时,求∠EDC的度数;
(2)如图2,当点D在线段BC上时,①求证:∠EDC=∠BAD
②作EF⊥BC于F,∠BAD、∠DEF的角平分线相交于点G,随着点D的运动,∠G的度数会变化吗?如果不变,求出∠G的度数;如果变化,说明理由;
(3)如图3,当点D在BC的延长线上时,作EF⊥BD于F,∠BAD的角平分线和∠DEF的角平分线的反向延长线相交于点G,∠G的度数会变化吗?请说明理由.

查看答案和解析>>

同步练习册答案