精英家教网 > 初中数学 > 题目详情
在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CEBD于E,延长AF、EC交于点H,下列结论中:①AF=FH;②B0=BF;③CA=CH;④BE=3ED;正确的个数为(  )
A.1个B.2个 C.3个D.4个
C

试题分析:根据矩形的性质可得OA=OB=OC=OD,由AD=,AB=1根据特殊角的锐角三角函数值可求出∠ADB=30°,即得∠ABO=60°,从而可证得△ABO是等边三角形,即得AB=BO=AO=OD=OC=DC,推出BF=AB,求出∠H=∠CAH=15°,求出DE=EO,再依次分析各小题即可作出判断.
根据已知条件不能推出AF=FH,故①错误;
解:∵四边形ABCD是矩形,
∴∠BAD=90°,
∵AD=,AB=1,
∴tan∠ADB=
∴∠ADB=30°,
∴∠ABO=60°,
∵四边形ABCD是矩形,
∴AD∥BC,AC=BD,AC=2AO,BD=2BO,
∴AO=BO,
∴△ABO是等边三角形,
∴AB=BO,∠AOB=∠BAO=60°=∠COE,
∵AF平分∠BAD,
∴∠BAF=∠DAF=45°,
∵AD∥BC,
∴∠DAF=∠AFB,
∴∠BAF=∠AFB,
∴AB=BF,
∵AB=BO,
∴BF=BO,故②正确;
∵∠BAO=60°,∠BAF=45°,
∴∠CAH=15°,
∵CE⊥BD,
∴∠CEO=90°,
∵∠EOC=60°,
∴∠ECO=30°,
∴∠H=∠ECO-∠CAH=30°-15°=15°=∠CAH,
∴AC=CH,故③正确;
∵△AOB是等边三角形,
∴AO=OB=AB,
∵四边形ABCD是矩形,
∴OA=OC,OB=OD,AB=CD,
∴DC=OC=OD,
∵CE⊥BD,
∴DE=EO=DO=BD,
∴BE=3ED,故④正确;
∴正确的有3个,
故选C.
点评:本题知识点较多,综合性强,是中考常见题,一般是中考压轴题,难度较大,需特别注意.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图所示,平行四边形ABCD的对角线AC、BD相交于点O,试添加一个条件:   ,使得平行四边形ABCD为菱形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别为边AB、BC、CD、DA的中点,求证:四边形EFGH为菱形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在一个边长为12.75cm的正方形纸板内,割去一个边长为7.25cm的正方形,剩下部分的面积等于______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知如图,矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE于F.求证:DF=DC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD中,AB=4,BC=9,动点Q沿着C→D→A→B的方向运动至点B停止,设点Q运动的路程为x,△QCB的面积为y.

(1)当点Q在CD上运动时,求y与x的关系式;
(2)当点Q在AD上运动时,△QCB的面积改变了吗?请说明理由.
(3)说一说y是怎样随着x的变化而变化的?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,?ABCD中,对角线AC与BD相交于点E,∠AEB=450,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为     

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距离分别为40cm、8cm.为使板凳两腿底端A、D之间的距离为50cm,那么横梁EF应为多长?(材质及其厚度等暂忽略不计).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在四边形ABCD中AB∥DC,AD∥BC,如果∠B=30°,那么∠D=_____度.

查看答案和解析>>

同步练习册答案