精英家教网 > 初中数学 > 题目详情

【题目】如图(1),AB=4cmACABBDABAC=BD=3cm,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,他们的运动时间为t(s).

1)若点Q的运动速度与点P的运动速度相等,当t=1时,ACPBPQ是否全等,请说明理由

2)判断此时线段PC和线段PQ的关系,并说明理由。

3)如图(2),将图(1)中的“ACABBDAB”改为“∠CAB=DBA=60°”,其他条件不变,设点Q的运动速度为x cm/s,是否存在实数x,使得ACPBPQ全等?若存在,求出相应的xt的值;若不存在,请说明理由。

【答案】1)△ACP≌△BPQ,理由见解析;
2PC=PQPCPQ,理由见解析;

3)存在;

【解析】

1)利用SAS证得△ACP≌△BPQ

2)由(1)得出PC=PQ,∠ACP=BPQ,进一步得出∠APC+BPQ=APC+ACP=90°得出结论即可;

3)分两种情况:①AC=BPAP=BQ,②AC=BQAP=BP,建立方程组求得答案即可.

解:(1)如图(1),△ACP≌△BPQ,理由如下:


t=1时,AP=BQ=1

BP=AC=3

又∵∠A=B=90°
在△ACP和△BPQ中,

∴△ACP≌△BPQSAS).
2PC=PQPCPQ,理由如下:

由(1)可知△ACP≌△BPQ

PC=PQ,∠ACP=BPQ
∴∠APC+BPQ=APC+ACP=90°
∴∠CPQ=90°
PCPQ
3)如图(2),分两种情况讨论:

AC=BPAP=BQ时,△ACP≌△BPQ,则

解得

AC=BQAP=BP时,△ACP≌△BQP,则,

解得

综上所述,存在使得△ACP与△BPQ全等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读材料:

小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如.善于思考的小明进行了以下探索:

(其中均为整数),则有.

.这样小明就找到了一种把类似的式子化为平方式的方法.

请你仿照小明的方法解决下列问题:

(1)均为正整数时,若,用含的式子分别表示,得__________________.

(2)利用所探索的结论,填空:(_____+_____)2

(3),且均为正整数,求的值?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).

(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)

(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,为等边三角形,点坐标为,点轴上位于点上方的一个动点,以为边向的右侧作等边,连接,并延长轴于点.

(1)求证:

(2)当点在运动时,是否平分?请说明理由;

(3)当点在运动时,在轴上是否存在点,使得为等腰三角形?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,于点.

1)如图1,求证:

2)如图2,若平分,求证:

3)若,且为等腰三角形,则______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABC中,ACBC,∠ACB90°,CEAB相交于点D,且BECEAFCE,垂足分别为点EF

1)若AF5BE2,求EF的长.

2)如图2,取AB中点G,连接FCEC,请判断△GEF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中ABBC,EFBCAEF=143°,AB=AE=1.2米,那么适合该地下车库的车辆限高标志牌为( )(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图等边三角形ABC的边长为4ADBC边上的中线FAD边上的动点EAC边上一点AE2EFCF取得最小值时∠ECF的度数为( )

A. 20° B. 25° C. 30° D. 45°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在ABCD中,DHAB于点H,CD的垂直平分线交CD于点E,交AB于点F,AB=6,DH=4,BF:FA=1:5.

(1)如图2,作FGAD于点G,交DH于点M,将DGM沿DC方向平移,得到CG′M′,连接M′B.

①求四边形BHMM′的面积;

②直线EF上有一动点N,求DNM周长的最小值.

(2)如图3,延长CBEF于点Q,过点QQKAB,过CD边上的动点PPKEF,并与QK交于点K,将PKQ沿直线PQ翻折,使点K的对应点K′恰好落在直线AB上,求线段CP的长.

查看答案和解析>>

同步练习册答案