精英家教网 > 初中数学 > 题目详情
1.如图①,在矩形ABCD中,AC为对角线,AB=4,AD=3,点P从点A出发以每秒2个单位长度的速度沿A-C-B-A运动一周到点A停止,点Q始终为线段AP的中点,当点P与点A不重合时,过点Q作QM⊥AP交边AD或DC于点M,以PQ,QM为边作矩形PQMN.设点P的运动时间为t(秒).
(1)当点P在线段AC上运动时.
①用含t的代数式表示线段QM的长;
②当矩形PQMN与△ADC重叠部分图形不是五边形时,设重叠部分图形面积为S(平方单位),求S与t的函数关系式.
(2)当点P沿A-C-B运动时,如图①,图②,若矩形PQMN为正方形,求t的值;
(3)设点C关于直线PN的对称点为点C′,点D关于直线MN的对称点为点D′.直接写出线段C′D′与矩形PQMN的边只有一个公共点时t的取值范围.

分析 (1)①分两种切线当点M在线段AD上运动时,当点M在CD上时,利用相似三角形的性质即可解决问题.
②分两种情形如图1中,当0<t$≤\frac{45}{35}$时,如图2中,当$\frac{9}{5}$$≤t≤\frac{5}{2}$时,分别求解即可.
(2)分两种情形如图3中,当点P在AC上时,点M在CD上时,如图4中,当点P在BC上时,分别列出方程即可解决问题.
(3)如图5中,当点D关于MN的对称点在AC上时,易知点M是AD中点,求出此时t的值,根据图6、图7可以得出结论.

解答 解:(1)①当点M在线段AD上运动时(如图1中),

∵∠QAM=∠DAC,∠AQM=∠D=90°,
∴△AQM∽△ADC,
∴$\frac{AQ}{AD}$=$\frac{QM}{CD}$,
∴$\frac{t}{3}$=$\frac{QM}{4}$,
∴QM=$\frac{4}{3}$t.
当点M在CD上时(如图2中)

,由△CQM∽△CDA,得$\frac{CQ}{CD}$=$\frac{QM}{AD}$,
∴$\frac{5-t}{4}$=$\frac{QM}{3}$,
∴QM=-$\frac{3}{4}$t+$\frac{15}{4}$.

②如图1中,当0<t$≤\frac{45}{35}$时,S=$\frac{3}{4}$t•t=$\frac{3}{4}$t2
如图2中,当$\frac{9}{5}$$≤t≤\frac{5}{2}$时,S=$\frac{1}{2}$•[$\frac{3}{4}$(5-2t)+$\frac{3}{4}$(5-t)]•t=-$\frac{9}{8}$t2+$\frac{15}{4}t$.

(2)如图3中,当点P在AC上时,点M在CD上时,

∵矩形PQMN为正方形,
∴PQ=QM,
∴t=-$\frac{3}{4}$t+$\frac{15}{4}$,
∴t=$\frac{15}{7}$,
如图4中,当点P在BC上时,

过点Q作QE⊥CD于E,QF⊥BC于F.
∵矩形PQMN是正方形,
∴QM=QP,∠MQP=∠EQF=90°,
∴∠MQE=∠PQF,∵∠QEM=∠QFP=90°,
∴△QEM≌△QFP,
∴QF=QE,
∵AQ=PQ,QF∥AB,
∴BF=FP,
∴QF=QE=$\frac{1}{2}$AB=2,BF=3-2=1,
∴PB=2BF=2,
∴8-2t=2,
∴t=3.

(3)如图5中,当点D关于MN的对称点在AC上时,易知点M是AD中点,当点M与D重合时,AQ=$\frac{9}{5}$,

由△AQM∽△ADC,得$\frac{AM}{AC}$=$\frac{AQ}{AD}$,
∴$\frac{\frac{3}{2}}{5}$=$\frac{t}{3}$,
∴t=$\frac{9}{10}$,
∴由图6可知,当$\frac{9}{10}$<t<$\frac{9}{5}$时,线段C′D′与矩形PQMN的边只有一个公共点,

由图7中可知,当$\frac{5}{2}$<t<4时,线段C′D′与矩形PQMN的边只有一个公共点.

如图8中,当点P在AB边上时,满足CN=NM=DM时,线段C′D′与矩形PQMN的边只有一个交点,此时t=$\frac{5+3+\frac{4}{3}}{2}$=$\frac{14}{3}$.


综上所述当$\frac{9}{10}$<t<$\frac{9}{5}$或$\frac{5}{2}$<t<4或t=$\frac{14}{3}$s时,线段C′D′与矩形PQMN的边只有一个公共点.

点评 本题考查四边形综合题、矩形的性质、相似三角形的判定和性质等知识,解题的关键是学会正确画出图形,学会分类讨论,充分利用相似三角形的性质解决问题,属于中考压轴题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.如图,在△ABC中,∠ABC=45°,AC=8,AD⊥BC于D,BE⊥AC于E,AD、BE相交于点F,求线段BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.有人利用手机发微信,获得信息的人也按他的发送人数发送该条微信,经过两轮微信的发送,共有56人手机上获得同一条微信,则每轮一个人要向几个人发送微信?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.设m为整数,用m表示被3除余1的整数是(  )
A.3m-1B.$\frac{m}{3}-1$C.$\frac{m}{3}+1$D.3m+1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,A,B,C,D是⊙O上的四点,AB=CD,求证:AC=BD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.一个正方形的面积为16cm2,当把边长增加x cm时,正方形面积为y cm2,求y与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.某公司第1个月的盈利是1万元,以后每个月盈利都比上个月增长30%,如:第2个月的盈利为1×(1+30%)=1.3(万元),第3个月的盈利为1.3×(1+30%)=1.32,以此类推,该公司第14个月盈利会首次突破30万元.
(参考数值:1.33≈2.20,1.34≈2.86,1.36≈4.83,1.37≈6.27)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,在△ABC中,∠A=∠ACB,CD是△ABC的角平分线,CE是△ABC的高.∠DCE=48°,则∠ACB的度数为(  )
A.∠ACB=28°B.∠ACB=29°C.∠ACB=30°D.∠ACB=31°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.若a是有理数,则下列各式一定成立的有(  )
A.-a2+1是负数B.-(a+1)2是负数C.a2+1是正数D.|a-1|是正数

查看答案和解析>>

同步练习册答案