精英家教网 > 初中数学 > 题目详情
14.小明从二次函数y=ax2+bx+c的图象(如图)中观察得到了下面五条信息:
①abc>0
②2a-3b=0
③b2-4ac>0
④a+b+c>0
⑤4b<c
则其中结论正确的个数是(  )
A.2个B.3个C.4个D.5个

分析 由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.

解答 解:①因为函数图象与y轴的交点在y轴的负半轴可知,c<0,
由函数图象开口向上可知,a>0,由①知,c<0,
由函数的对称轴在x的正半轴上可知,x=-$\frac{b}{2a}$>0,故b<0,故abc>0;故此选项正确;
②因为函数的对称轴为x=-$\frac{b}{2a}$=$\frac{1}{3}$,故2a=-3b,即2a+3b=0;故此选项错误;
③因为图象和x轴有两个交点,所以b2-4ac>0,故此选项正确;
④把x=1代入y=ax2+bx+c得:a+b+c<0,故此选项错误;
⑤当x=2时,y=4a+2b+c=2×(-3b)+2b+c=c-4b,
而点(2,c-4b)在第一象限,
∴⑤c-4b>0,故此选项正确;
其中正确信息的有①③⑤,
故选B.

点评 此题主要考查了图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.解二元一次方程组
(1)$\left\{\begin{array}{l}{3x+y=1}\\{2x-3y=8}\end{array}\right.$                                
(2)$\left\{\begin{array}{l}\frac{x}{5}-\frac{y}{2}=5\\ \frac{x}{2}+\frac{y}{3}=3\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.了解2008年5月18日晚中央电视台“爱的奉献”抗震救灾文艺晚会的收视率,采用抽查的方式√(判断对错)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(2,2),B(1,-1),C(3,0).请在y轴右侧,画出以点O为位似中心,放大△ABC到原来2倍的△A1B1C1,并写出△A1B1C1三个顶点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指数y随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):
(1)求出线段AB,曲线CD的解析式,并写出自变量的取值范围;
(2)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?
(3)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°,得到△FEC
(1)猜想AE与BF有何关系,说明理由.
(2)若△ABC的面积为3cm2,求四边形ABFE的面积.
(3)当∠ACB为多少度时,四边形ABFE为矩形?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.小李在家润超市购买一种商品,与营业员有一段对话:小李:上个月买还要90元一个,而这次便宜多了,一次降价幅度达到19%,营业员:不,这中间还降了一次价,两次降价幅度相同.
请你帮小李算一算,该商品平均每次降价的百分率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.一个商贩准备了10张质地均匀的纸条,其中能得到一块糖的纸条有5张,能得到三块糖的纸条有3张,能得到五块糖的纸条有2张.从中随机抽取一张纸条,恰好是能得到三块糖的纸条的概率是0.3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如表:
x-5-4-3-2-1
y3-2-5-6-5
则关于x的一元二次方程ax2+bx+c=3的根是-5或1.

查看答案和解析>>

同步练习册答案