精英家教网 > 初中数学 > 题目详情
10.经过已知点P和Q的圆的圆心轨迹是线段PQ的垂直平分线.

分析 要求作经过已知点P和点Q的圆的圆心,则圆心应满足到点P和点Q的距离相等,从而根据线段的垂直平分线性质即可求解.

解答 解:根据同圆的半径相等,则圆心应满足到点P和点Q的距离相等,即经过已知点P和点Q的圆的圆心的轨迹是线段PQ的垂直平分线.
故答案为:线段PQ的垂直平分线.

点评 此题考查了点的轨迹问题,熟悉线段垂直平分线的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直径AD折叠,使点C恰好与AB边上的点E重合,求出CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,已知AB∥CD∥EF,且∠A=50°,∠F=120°,DG平分∠ADF,求∠CDG的度数.
解:∵AB∥CD
∴∠A=∠ADC两直线平行,内错角相等;
又∵∠A=50°
∴∠ADC=50°;
∵CD∥EF
∴∠F+∠CDF=180°(两直线平行,同旁内角互补 );
又∵∠F=120°
∴∠CDF=60°;∴∠ADF=110°;
∵DG平分∠ADF
∴∠ADG=$\frac{1}{2}$∠ADF=55°°角平分线的意义或定义;
∴∠CDG=∠ADG-∠ADC=15°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如果x+y=5,x2+y2=21,那么(x-y)2=17.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.已知直线y=kx+b与坐标轴围成的三角形面积是6,且经过(3,0),则这条直线的解析式为y=-$\frac{4}{3}$x+4或y=$\frac{4}{3}$x-4.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图所示,已知线段m>n,求作一线段m-n.作法:画射线AM,在射线AM上截取AB=m,在线段AB上截取BC=n,那么所求的线段是(  )
A.ACB.BCC.ABD.BM

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知美国纽约与北京的时差为-13h,日本东京与北京的时差为+1h(比北京时间早记为+,比北京时间晚记为-),小明、小军分别在北京乘坐早晨7点的航班飞行20h和9h到达纽约和东京,问二人到达目的地时当地时间各是几点?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.定义:既有外接圆,又有内切圆的凸多边形叫做双圆多边形.如图1,⊙O1是△ABC外接圆,⊙O2是△ABC的内切圆,则△ABC就是双圆三角形.
(1)请写出一个双圆四边形的名你正方形;
(2)如图2,已知四边形ABCD是双圆四边形,其内切圆与四条边相切于点E,F,G,H,且EG是内切圆的直径,交弦FH于点P,连接EF,FG.
①当∠FGE=40°时,求∠BFE的度数;
②求证:HF⊥GE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,四边形ABCD中,∠C=90°,∠B=60°,AB=8,BC=CD=6,点E是AB上一点,过点E作EG∥BC,EF∥DC,分别交CD,BC于点G,F.
(1)试判断四边形EFCG的形状并加以证明;
(2)四边形EFCG可以是正方形吗?若可以,请在图2中画出正方形EFCG,并简要说明画图方法,若不可以,请说明理由;
(3)当BE的长为多少时,四边形EFCG的面积最大?

查看答案和解析>>

同步练习册答案