精英家教网 > 初中数学 > 题目详情
精英家教网如图,点D是△ABC的边BC上一点,如果AB=AD=2,AC=4,且BD:DC=2:3,则△ABC是(  )
A、锐角三角形B、直角三角形C、钝角三角形D、锐角三角形或直角三角形
分析:过A作AE垂直BC于E,令BD=2x CD=3x 则BC=5x,由锐角三角函数的定义可求出cosB=
x
2
,根据余弦定理可求出x的值,再由cosA=0即可求出∠A的度数.
解答:精英家教网解:方法1:过A作AE垂直BC于E,
令BD=2x CD=3x 则BC=5x,
∵AB=AD=2,
∴BE=x,cosB=
x
2

∴AC2=AB2+BC2-2AB•BCcosB 即16=4+25x2-10x2
解得,x=
2
5

∴△ABC用余弦定理BC2=AB2+AC2-2AB•ACcosA 即20=4+16-16cosA,
∴cosA=0,∠A=90°.
精英家教网
方法2:过点D作AB平行线交AC于E,
因此很容易得到DE:AB=CE:CA=CD:CB=3:5,
那么DE=1.2;
AD=2,AE=1.6,由勾股定理得△AED构成一个直角三角形,即△ABC是直角三角形
故选B.
点评:本题考查的是余弦定理及锐角三角函数的定义,特殊角的三角函数值,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,点F是△ABC外接圆
BC
的中点,点D、E在边AC上,使得AD=AB,BE=EC.证明:B、E、D、F四点共圆.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,点P是△ABC内的一点,有下列结论:①∠BPC>∠A;②∠BPC一定是钝角;③∠BPC=∠A+∠ABP+∠ACP.其中正确的结论共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点O是△ABC内任意一点,G、D、E分别为AC、OA、OB的中点,F为BC上一动点,问四边形GDEF能否为平行四边形?若可以,指出F点位置,并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•攀枝花模拟)如图,点G是△ABC的重心,CG的延长线交AB于D,GA=5,GC=4,GB=3,将△ADG绕点D顺时针方向旋转180°得到△BDE,则△EBC的面积=
12
12

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•天津)如图,点I是△ABC的内心,AI交BC边于D,交△ABC的外接圆于点E.
求证:(1)IE=BE;
      (2)IE是AE和DE的比例中项.

查看答案和解析>>

同步练习册答案