【题目】如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接ED,BE.
(1)求证:△ABD∽△AEB;
(2)当 = 时,求tanE;
(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.
【答案】(1)证明见解析;(2);(3).
【解析】
(1)要证明△ABD∽△AEB,已经有一组对应角是公共角,只需要再找出另一组对应角相等即可;(2)由于AB:BC=4:3,可设AB=4,BC=3,求出AC的值,再利用(1)中结论可得AB2=ADAE,进而求出AE的值,所以tanE=;(3)设AB=4x,BC=3x,由于已知AF的值,构造直角三角形后利用勾股定理列方程求出x的值,即可知道半径3x的值.
(1)证明:∵∠ABC=90°,
∴∠ABD=90°﹣∠DBC,
由题意知:DE是直径,
∴∠DBE=90°,
∴∠E=90°﹣∠BDE,
∵BC=CD,
∴∠DBC=∠BDE,
∴∠ABD=∠E,
∵∠A=∠A,
∴△ABD∽△AEB;
(2)解:∵AB:BC=4:3,
∴设AB=4,BC=3,
∴AC= =5,
∵BC=CD=3,
∴AD=AC﹣CD=5﹣3=2,
由(1)可知:△ABD∽△AEB,
∴ ,
∴AB2=ADAE,
∴42=2AE,
∴AE=8,
在Rt△DBE中
tanE= = =
(3)过点F作FM⊥AE于点M,
∵AB:BC=4:3,
∴设AB=4x,BC=3x,
∴由(2)可知;AE=8x,AD=2x,
∴DE=AE﹣AD=6x,
∵AF平分∠BAC,
∴ ,
∴ ,
∵tanE= ,
∴cosE= ,sinE= ,
∴ ,
∴BE= ,
∴EF= BE= ,
∴sinE= = ,
∴MF= ,
∵tanE= ,
∴ME=2MF= ,
∴AM=AE﹣ME= ,
∵AF2=AM2+MF2 ,
∴4= + ,
∴x= ,
∴⊙C的半径为:3x= .
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC 中, ,D、E是斜边BC上两点,且∠DAE=45°,将△绕点顺时针旋转90后,得到△,连接.列结论:
①△ADC≌△AFB;②△ ≌△;③△≌△;④
其中正确的是( )
A. ②④ B. ①④ C. ②③ D. ①③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
如图,把沿直线平行移动线段的长度,可以变到的位置;
如图,以为轴,把翻折,可以变到的位置;
如图,以点为中心,把旋转,可以变到的位置.
像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的.这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.
回答下列问题:
①在图中,可以通过平行移动、翻折、旋转中的哪一种方法怎样变化,使变到的位置;
②指图中线段与之间的关系,为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线l:y=kx和抛物线C:y=ax2+bx+1.
(1)当k=1,b=1时,抛物线C:y=ax2+bx+1的顶点在直线l:y=kx上,求a的值;
(2)若把直线l向上平移k2+1个单位长度得到直线r,则无论非零实数k取何值,直线r与抛物线C都只有一个交点;
(i)求此抛物线的解析式;
(ii)若P是此抛物线上任一点,过点P作PQ∥y轴且与直线y=2交于点Q,O为原点,
求证:OP=PQ.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(7分)如图,△ABC中,∠ACB=90°,D.E分别是BC、BA的中点,联结DE,F在DE延长线上,且AF=AE.
(1)求证:四边形ACEF是平行四边形;
(2)若四边形ACEF是菱形,求∠B的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点D在边BC上,连接AD,将线段AD绕点A逆时针旋转到AE,使得∠DAE=∠BAC,连接DE交AC于F,请写出图中一对相似的三角形:____(只要写出一对即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=﹣x+4与反比例函数y=的图象相交于点A(﹣2,a),并且与x轴相交于点B.
(1)求a的值;
(2)求反比例函数的表达式;
(3)求△AOB的面积;
(4)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形OBCD中的三个顶点在⊙O上,点A是⊙O上的一个动点(不与点B、C、D重合)。若四边形OBCD是平行四边形时,那么的数量关系是________________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com