精英家教网 > 初中数学 > 题目详情

如图,已知直线数学公式交坐标轴于A、B点,以线段AB为边向上作正方形ABCD,过点A、D、C的抛物线与直线的另一个交点为E.
(1)求点C、D的坐标
(2)求抛物线的解析式
(3)若抛物线与正方形沿射线AB下滑,直至点C落在x轴上时停止,求抛物线上C、E两点间的抛物线所扫过的面积.

解:(1)如图,分别过C、D两点作x轴、y轴的垂线,垂足为M、N,
由直线AB的解析式得AO=1,OB=2,
由正方形的性质可证△ADN≌△BAO≌△CBM,
∴DN=BM=AO=1,AN=CM=BO=2,
∴C(3,2),D(1,3);


(2)设抛物线解析式为y=ax2+bx+c,
将A(0,1),C(3,2),D(1,3)三点坐标代入,得
解得
∴y=-x2+x+1;

(3)∵AB=BC==
由△BCC′∽△AOB,得==
∴CC′=2BC=2
由割补法可知,抛物线上C、E两点间的抛物线所扫过的面积=S?CEE′C′=CC′×BC=2×=10,
即抛物线上C、E两点间的抛物线所扫过的面积为10.
分析:(1)分别过C、D两点作x轴、y轴的垂线,利用三角形全等的关系可确定C、D两点的坐标;
(2)根据A、C、D三点的坐标求抛物线解析式;
(3)由平移的性质可判断线段CE所扫过的部分为平行四边形,CC′为底,BC为高,由此求出C、E两点间的抛物线所扫过的面积.
点评:本题考查了二次函数的综合运用,点的坐标,待定系数法求抛物线解析式及平移的性质.关键是根据正方形的性质构造全等三角形确定点的坐标,根据平移的性质判断阴影部分图形的形状,根据图形形状求面积.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本题满分12分)如图,已知直线交坐标轴于A、B点,以线段AB为边向上作正方形ABCD,过点A、D、C的抛物线与直线的另一个交点为E.

1.(1)填空:点A的坐标为           ,点B的坐标为           ,AB的长为           

2.(2)求点C、D的坐标

3.(3)求抛物线的解析式

4.(4)若抛物线与正方形沿射线AB下滑,直至点C落在轴上时停止,则抛物线上C、E两点间的抛物线所扫过的面积为           

 

查看答案和解析>>

科目:初中数学 来源:2012届浙江十校九年级5月模拟数学试卷(带解析) 题型:解答题

如图,已知直线交坐标轴于两点,以线段为边向上作正方形,过点的抛物线与直线另一个交点为
【小题1】请直接写出点的坐标
【小题2】求抛物线的解析式
【小题3】若正方形以每秒个单位长度的速度沿射线下滑,直至顶点落在轴上时停止.设正方形落在轴下方部分的面积为,求关于滑行时间的函数关系式,并写出相应自变量的取值范围;

【小题4】在(3)的条件下,抛物线与正方形一起平移,当D落在x轴上时,抛物线与正方形同时停止,求抛物线上两点间的抛物线弧所扫过的面积.

查看答案和解析>>

科目:初中数学 来源:2012届湖北鄂州葛店中学九年级5月月考数学试卷(带解析) 题型:解答题

如图,已 知直线 交坐标轴于两点,以线段为边向上作正方形,过点的抛物线与直线另一个交点为

(1)请直接写出点的坐标;
(2)求抛物线的解析式;
(3)若正方形以每秒个单位长度的速度沿射线下滑,直至顶点落在x轴上时停止.设正方形落在轴下方部分的面积为,求关于滑行时间的函数关系式,并写出相应自变量的取值范围;
(4)在(3)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上两点间的抛物线弧所扫过的面积.

查看答案和解析>>

科目:初中数学 来源:2013届广西桂林市初中毕业升学模拟考试数学试卷(带解析) 题型:解答题

如图,已知直线交坐标轴于两点,以线段为边向上作正方形
,过点的抛物线与直线另一个交点为

(1)请直接写出点的坐标;
(2)求抛物线的解析式;
(3)若正方形以每秒个单位长度的速度沿射线下滑,直至顶点落在轴上时停止.设正方形落在轴下方部分的面积为,求关于滑行时间的函数关系式,并写出相应自变量的取值范围;

查看答案和解析>>

科目:初中数学 来源:2011-2012学年苏科版九年级(上)第三次月考试数学试卷(解析版) 题型:解答题

如图,已知直线交坐标轴于A、B点,以线段AB为边向上作正方形ABCD,过点A、D、C的抛物线与直线的另一个交点为E.
(1)求点C、D的坐标
(2)求抛物线的解析式
(3)若抛物线与正方形沿射线AB下滑,直至点C落在x轴上时停止,求抛物线上C、E两点间的抛物线所扫过的面积.

查看答案和解析>>

同步练习册答案