精英家教网 > 初中数学 > 题目详情
2.如图,AB∥CD,CE平分∠AED,则∠C=(  )
A.40°B.45°C.50°D.55°

分析 根据平行线的性质和角平分线的定义即可得到结论.

解答 解:∵AB∥CD,
∴∠AED=180°-∠D=100°,
∵CE平分∠AED,
∴∠AEC=$\frac{1}{2}∠$AED=50°,
∵AB∥CD,
∴∠C=∠AED=50°,
故选C.

点评 本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图,⊙O中,直径AB与弦CD相交,E是AC延长线上一点,连接BC、BD,且∠EBC=∠D.
(1)求证:EB是⊙O的切线;
(2)若⊙O的半径为5,且tanD=$\frac{1}{2}$,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资成本x成正比例关系,种植花卉的利润y2与投资成本x的平方成正比例关系,并得到了表格中的数据;
投资量x(万元)2
种植树木的利润y1(万元)4
种植花卉的利润y2(万元)2
(1)分别求出利润y1与y2关于投资量x的函数关系式;
(2)如果这位专业户计划以8万元资金投入种植花卉和树木,设他投入种植花卉金额万元,种植花卉和树木共获利润W万元,求出W与m之间的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?
(3)若该专业户想获利不低于22万元,在(2)的条件下,求出投资种植花卉的金额m的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.问题情境
已知矩形的面积为S(S为常数,S>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+$\frac{S}{x}$)(x>0)
探索研究
我们可以借鉴学习函数的经验,先探索函数y=x+$\frac{1}{x}$(x>0)的图象性质.
①列表:
x$\frac{1}{4}$$\frac{1}{3}$$\frac{1}{2}$1234
y$\frac{17}{4}$m$\frac{5}{2}$2$\frac{5}{2}$$\frac{10}{3}$$\frac{17}{4}$
表中m=$\frac{10}{3}$;
②描点:如图所示;
③连线:请在图中画出该函数的图象;
④观察图象,写出两条函数的性质;函数有最小值2;当x>1时,y随x的增大而增大
解决问题
在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.同样通过配方也可以求函数y=x+$\frac{1}{x}$(x>0)的最小值.
y=x+$\frac{1}{x}$=${(\sqrt{x})}^{2}$+${(\sqrt{\frac{1}{x}})}^{2}$=${(\sqrt{x})}^{2}$+${(\sqrt{\frac{1}{x}})}^{2}$-2$\sqrt{x}$•$\sqrt{\frac{1}{x}}$+2$\sqrt{x}$•$\sqrt{\frac{1}{x}}$=${(\sqrt{x}-\sqrt{\frac{1}{x})}}^{2}$+2
∵${({\sqrt{x}-\sqrt{\frac{1}{x}}})^2}$≥0,∴y≥2
∴当$\sqrt{x}$-$\sqrt{\frac{1}{x}}$=0,即x=1时,y最小值=2
请类比上面配方法,直接写出“问题情境”中的问题答案.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知直线AB分别交x,y轴于A(4,0),B两点,C(-4,a)为直线y=-x与直线AB的公共点.

(1)求点B的坐标;
(2)已知动点M在直线y=x+6上,是否存在点M,使得S△OMB=S△OMA,若存在,求出点M的坐标,若不存在,说明理由;
(3)点P,Q分别是x轴,y轴正半轴上一动点,Q在点B上方,且OP=BQ,QH是∠OQP的角平分线,交直线CD于H,求PQ-$\sqrt{2}$OH的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.已知⊙A的半径长为2,⊙B的半径长为5,如果⊙A与⊙B内含,那么圆心距AB的长度可以为(  )
A.0B.3C.6D.9

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.某电器商场销售甲、乙两种品牌空调,已知每台乙种品牌空调的进价比每台甲种品牌空调的进价高20%,用7200元购进的乙种品牌空调数量比用3000元购进的甲种品牌空调数量多2 台.
(1)求甲、乙两种品牌空调的进货价;
(2)该商场拟用不超过16000 元购进甲、乙两种品牌空调共10台进行销售,其中甲种品牌空调的售价为2500元/台,乙种品牌空调的售价为3500元/台.请你帮该商场设计一种进货方案,使得在售完这10 台空调后获利最大,并求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.在反比例函数y=$\frac{1-3k}{x}$的图象上有两点A(x1,y1)、B(x2,y2).若x1<0<x2,y1<y2则k的取值范围是(  )
A.k≥$\frac{1}{3}$B.k>$\frac{1}{3}$C.k<-$\frac{1}{3}$D.k<$\frac{1}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.在平面直角坐标系中,点A(4,-2),B(0,2),C(a,-a),a为实数,当△ABC的周长最小时,a的值是(  )
A.-1B.0C.1D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案