【题目】如图,平行四边形ABCD的对角线AC,BD交于O,EF过点O与AD,BC分别交于E,F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长_____.
【答案】12
【解析】
根据平行四边形的性质知,AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE和∠COF是对顶角相等,所以△OAE≌△OCF,所以OF=OE=1.5,CF=AE,所以四边形EFCD的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF,由此就可以求出周长.
解:∵四边形ABCD平行四边形,
∴AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE=∠COF,
∴△OAE≌△OCF,
∴OF=OE=1.5,CF=AE,
∴四边形EFCD的周长=ED+CD+CF+OF+OE
=ED+AE+CD+OE+OF
=AD+CD+OE+OF
=4+5+1.5+1.5
=12.
故答案为:12.
科目:初中数学 来源: 题型:
【题目】如图①,在平面直角坐标系中,直线:分别与轴、轴交于点、,且与直线:交于点,以线段为边在直线的下方作正方形,此时点恰好落在轴上.
(1)求出三点的坐标.
(2)求直线的函数表达式.
(3)在(2)的条件下,点是射线上的一个动点,在平面内是否存在点,使得以、、、为顶点的四边形是菱形?若存在,直接写出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD,点E在BA延长线上,点F在BC上,且∠CDE=2∠ADF.
(1)求证:∠E=2∠CDF;
(2)若F是BC中点,求证:AE+DE=2AD;
(3)作AG⊥DF于点G,连CG.当CG取最小值时,直接写出AE:AB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AC、BD相交于点O,O是AC的中点,AB//DC,AC=10,BD=8.
(1)求证:四边形ABCD是平行四边形;
(2)若AC⊥BD,求平行四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知矩形 OABC,O 为坐标原点,已知 A(4,0)、C(0,2),D 为边 OA 的中点,连接 BD,M 点与 C 点重合,N 为 x 轴上一点,MN∥BD, 直线 MN 沿着 x 轴向右平移.
(1)当四边形 MBDN 为菱形时,N 点的坐标是 ;
(2)当 MN 平移到何处时,恰好将四边形 ODBC 的面积为 1:3 的两部分?请求出此时直线 MN 的解析式;
(3)在(1)的条件下,在矩形 OABC 的四条边上,是否存在点 F,连接 DF, 将矩形沿着 DF 所在的直线翻折,使得点 O 恰好落在直线 MN 上,若存在, 求出 F 点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知四边形中,,垂足为点,.
(1)如图1,求证:;
(2)如图2,点为上一点,连接,,求证:;
(3)在(2)的条件下,如图3,点为上一点,连接,点为的中点,分别连接,,+==,,求线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:OE=OF;
(2)若CE=8,CF=6,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com