【题目】如图1,△ABC和△CDE都是等边三角形,且点A、C、E在一条直线上,AD与BE交于点O,AD与BC交于点P,CD与BE交于点Q,连接PQ
(1)求证:AD=BE;
(2)∠AOB的度数为 ;PQ与AE的位置关系是 ;
(3)如图2,△ABC固定,将△CDE绕点C按顺时针(或逆时针)方向旋转任意角度α,在旋转过程中,(1)中的结论是否总成立?∠AOB的度数是否改变?并说明理由.
【答案】(1)见解析;(2)60°,PQ∥AE;(3)在旋转过程中,(1)中的结论总成立,∠AOB的度数不会改变,见解析
【解析】
(1)根据等边三角形性质得出AC=BC,CE=CD,∠ACB=∠ECD=60°,求出∠BCE=∠ACD,根据SAS推出两三角形全等即可;
(2)由三角形的外角性质,可得∠AOB=∠BEA+∠DAC,∠ACB=∠EBC+∠BEA,则∠AOB=∠ACB=60°,证明∠QPC=∠BCA,可得PQ∥AE;
(3)证明△ACD≌△BCE(SAS),得到AD=BE,∠DAC=∠EBC,根据∠BOA=180°﹣∠ABO﹣∠BAO=180°﹣∠ABC﹣∠BAC,即可解答.
(1)证明:∵△ABC和△CDE为等边三角形,
∴AC=BC,CD=CE,∠BCA=∠DCE=60°,
∴∠ACD=∠BCE,
在△ACD和△BCE中,
AC=BC,∠ACD=∠BCE,CD=CE,
∴△ACD≌△BCE(SAS),
∴AD=BE;
(2)∵△ACD≌△BCE,
∴∠DAC=∠EBC,
由三角形的外角性质,∠AOB=∠BEA+∠DAC,
∠ACB=∠EBC+∠BEA,
∴∠AOB=∠ACB=60°;
∵∠DCP=60°=∠ECQ,
∴在△CDP和△CEQ中,
∠ADC=∠BEC,CD=CE,∠DCP=∠ECQ,
∴△CDP≌△CEQ(ASA).
∴CP=CQ,
∴∠CPQ=∠CQP=60°,△PCQ是等边三角形,
∴∠QPC=∠BCA,
∴PQ∥AE;
故答案为:60°,PQ∥AE;
(3)在旋转过程中,(1)中的结论总成立,∠AOB的度数不会改变,理由如下:
∵△ABC和△CDE都是等边三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠BCD=∠DCE+∠BCD,
即∠ACD=∠BCE,
在△ACD和△BCE中,
∵AC=BC,∠ACD=∠BCE,CD=CE,
∴△ACD≌△BCE(SAS),
∴AD=BE,∠DAC=∠EBC,
∴∠BOA=180°﹣∠ABO﹣∠BAO=180°﹣∠ABC﹣∠BAC=60°.
科目:初中数学 来源: 题型:
【题目】如图,数轴上的点A、B、C、D、E表示连续的五个整数,对应数分别为a、b、c、d、e.
(1)若a+e=0,则代数式b+c+d= ;
(2)若a是最小的正整数,先化简,再求值:;
(3)若a+b+c+d=2,数轴上的点M表示的实数为m(m与a、b、c、d、e不同),且满足MA+MD=3,则m的范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C是弧BD的中点,CE⊥AB于点F.
(1)求证:BF=CF;
(2)若CD=3cm,AC=4cm,求⊙O的半径及CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,是原点,是的角平分线.
确定所在直线的函数表达式;
在线段上是否有一点,使点到轴和轴的距离相等,若存在,求出点的坐标;若不存在,请说明理由;
在线段上是否有一点,使点到点和点的距离相等,若存在,直接写出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2016年9月,某手机公司发布了新款智能手机,为了调查某小区业主对该款手机的购买意向,该公司在某小区随机对部分业主进行了问卷调查,规定每人只能从A类(立刻去抢购)、B类(降价后再去买)、C类(犹豫中)、D类(肯定不买)这四类中选一类,并制成了以下两幅不完整的统计图,由图中所给出的信息解答下列问题:
(1)扇形统计图中B类对应的百分比为 %,请补全条形统计图;
(2)若该小区共有4000人,请你估计该小区大约有多少人立刻去抢购该款手机.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学课上,李老师出示了如下框中的题目.
在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图.试确定线段AE与DB的大小关系,并说明理由. |
小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况,探索结论
当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:
AE DB(填“>”,“<”或“=”).
图1 图2
(2)特例启发,解答题目
解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).
理由如下:如图2,过点E作EF∥BC,交AC于点F.
(请你完成以下解答过程)
(3)拓展结论,设计新题
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=kx+b交x轴于点A,交y轴于点B,直线y=2x﹣4交x轴于点D,与直线AB相交于点C(3,2).
(1)根据图象,写出关于x的不等式2x﹣4>kx+b的解集;
(2)若点A的坐标为(5,0),求直线AB的解析式;
(3)在(2)的条件下,求四边形BODC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分8分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.
(1)该商家购进的第一批衬衫是多少件?
(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com