精英家教网 > 初中数学 > 题目详情

反比例函数y=的图象经过点A(4,-2),
(1)求这个函数的解析式;
(2)请判断点B(1,8)是否在这个反比例函数的图象上,并说明理由.

(1)y=-.   (2)不在.

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,直线y=x﹣1与反比例函数y=的图象交于A、B两点,与x轴交于点C,已知点A的坐标为(﹣1,m).
⑴求反比例函数的解析式;
⑵若点P(n,1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB于点F,求△CEF的面积.
⑶若B(2,1),当x为何值时,一次函数的值大于反比例函数的值

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知反比例函数y=的图象与正比例函数y=kx的图象交于点A(m,﹣2).
(1)求正比例函数的解析式及两函数图象另一个交点B的坐标;
(2)试根据图象写出不等式≥kx的解集;
(3)在反比例函数图象上是否存在点C,使△OAC为等边三角形?若存在,求出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,制作某种食品的同时需将原材料加热,设该材料温度为y ℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系.已知该材料在加热前的温度为4℃,加热一段时间使材料温度达到28℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系,已知当第12分钟时, 材料温度是14℃.
(1)分别求出该材料加热和停止加热过程中y与x的函数关系式(写出x的取值范围);
(2)根据该食品制作要求,在材料温度不低于12℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理的时间为多少分钟?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某乡要在生活垃圾存放区建一个老年活动中心,这样必须把1 200 m3的生活垃圾运走.
(1)假如每天能运x m3,所需时间为y天,写出y与x之间的函数关系式;
(2)若每辆拖拉机一天能运12 m3,则5辆这样的拖拉机要多少天才能运完?
(3)在(2)的情况下,运了8天后,剩下的任务要在不超过6天的时间完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,),tan∠BOC

(l)求该反比例函数和一次函数的解析式;
(2)在x轴上有一点E(O点除外),使得△BCE与△BCO的面积相等,求出点E的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,.是反比例函数(k>0)在第一象限图象上的两点,点的坐标为(2,0),若△与△均为等边三角形.

(1)求此反比例函数的解析式;
(2)求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线L经过点A(0,﹣1),且与双曲线c:交于点B(2,1).

(1)求双曲线c及直线L的解析式;
(2)已知P(a﹣1,a)在双曲线c上,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

(2013年四川自贡4分)如图,在函数的图象上有点P1、P2、P3…、Pn、Pn+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、Pn、Pn+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、Sn,则S1=
   ,Sn=   .(用含n的代数式表示)

查看答案和解析>>

同步练习册答案