已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.
(1)求证:AE与⊙O相切;
(2)当BC=4,cosC=时,求⊙O的半径.
解:(1) 连接OM,则OM=OB
∴∠OBM=∠OMB
∵BM平分∠ABC
∴∠OBM=
∴∠OMB=∠EBM
∴OM∥BE
∴∠AMO=∠AEB
而在⊿ABC中,AB=AC,AE是角平分线
∴AE⊥BC
∴∠AMO=∠AEB=90°
∴AE与⊙O相切. ------------ 4分
(2) 在⊿ABC中,AB=AC,AE是角平分线
∴BE=BC=2,∠ABC=∠ACB
∴在Rt⊿ABC中cos∠ABC=cos∠ACB==
∴AB=6 --------------2分
设⊙O的半径为r,则AO=6-r
∵OM∥BC
∴△AOM∽△ABE
∴= 即 =
∴r= --------------4分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com