【题目】如图1,点为线段上一点,一副直角三角板的直角顶点与点重合,直角边、在线段上,.
(1)将图1中的三角板绕着点沿顺时针方向旋转到如图2所示的位置,若,则________;猜想与的数量关系为________;
(2)将图1中的三角板绕着点沿逆时针方向按每秒的速度旋转一周,三角板不动,请问几秒时所在的直线平分?
(3)将图1中的三角板绕着点沿逆时针方向按每秒的速度旋转一周,同时三角板绕着点沿顺时针方向按每秒的速度旋转(随三角板停止而停止),请计算几秒时与的角分线共线.
【答案】(1)145°,180°;(2)3秒或15秒后OD所在的直线平分∠AOB;(3)秒或或秒后与的角分线共线.
【解析】
(1)根据互余关系先求出∠AOD,再由角的和差求出结果;
(2)当沿逆时针方向旋转45°或225°时,OD所在的直线平分∠AOB,由此便可求得结果;
(3)①当∠COD和∠AOB角平分线夹角为180时,②当∠COD和∠AOB角平分线重合时,即夹角为0°,③当∠COD和∠AOB角平分线重合后再次夹角为180°时,列出关于t的方程进行解答.
解:(1)∵∠COD=90°,∠AOC=35°,
∴∠AOD=∠COD-∠AOC=55°,
∵∠AOB=90°,
∴∠BOD=∠AOB+AOD=145°,
∵∠BOD=∠AOD+∠AOC+BOC,
∴∠AOC+∠BOD=∠AOC+∠AOD+∠AOC+∠BOC=∠COD+∠AOB=90°+90°=180°,
∴∠AOC+∠BOD=∠=180°,
故答案为:145°,180°;
(2)根据题意可得,
当旋转45°或225°时,OD所在的直线平分∠AOB,
所以,旋转时间为:45°÷15°=3(秒),225°÷15°=15(秒),
则3秒或15秒后OD所在的直线平分∠AOB;
(3)起始位置∠COD和∠AOB角平分线夹角为90°,
①当∠COD和∠AOB角平分线夹角为180时,
,
解得(秒);
②当∠COD和∠AOB角平分线重合时,即夹角为0°,
,
解得:(秒);
③当∠COD和∠AOB角平分线重合后再次夹角为180°时,
,
解得:(秒);
综上,秒或或秒后与的角分线共线.
科目:初中数学 来源: 题型:
【题目】有3个完全相同的小球,把它们分别标号为1,2,3,放在一个不透明的口袋中,从口袋中随机摸出一个小球,记下标号后放回,再从口袋中随机摸出一个小球,记下标号.用画树状图(或列表)的方法,求两次摸出的小球号码恰好都大于1的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=45°,∠ACB=60°,BC=2+2,D是BC边上异于点B,C的一动点,将三角形ABD沿AB翻折得到△ABD1,将△ACD沿AC翻折得到△ACD2,连接D1D2,则四边形D1BCD2的面积的最大值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】白色污染( Whitepollution)是人们对难降解的塑料垃圾(多指塑料袋)污染环境现象的一种形象称谓.为了让全校同学感受丢弃塑料袋对环境的影响,小彬随机抽取某小区户居民,记录了这些家庭年某个月丢弃塑料袋的数量(单位:个)
请根据上述数据,解答以下问题:
(1)小彬按“组距为”列出了如下的频数分布表(每组数据含最小值不含最大值),请将表中空缺的部分补充完整,并补全频数直方图;
分组 | 划记 | 频数 |
: | _______ | ________ |
: | ||
: | _______ | ________ |
: | ||
合计 | / |
(2)根据(1)中的直方图可以看出,这户居民家这个月丢弃塑料袋的个数在 组的家庭最多;(填分组序号)
(3)根据频数分布表,小彬又画出了如图所示的扇形统计图.请将统计图中各组占总数的百分比填在图中,并求出组对应的扇形圆心角的度数;
(4)若该小区共有户居民家庭,请你估计每月丢弃的塑料袋数量不小于个的家庭个数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小颖为妈妈准备了一份生日礼物,礼物外包装盒为长方体形状,长、宽、高分别为、、,为了美观,小颖决定在包装盒外用丝带打包装饰,她发现,可以用如图所示的三种打包方式,所需丝带的长度分别为,,(不计打结处丝带长度)
(1)用含、、的代数式分别表示,,;
(2)方法简介:
要比较两数与大小,我们可以将与作差,结果可能出现三种情况:
①,则;
②,则;
③,则;
我们将这种比较大小的方法叫做“作差法”.
请帮小颖选出最节省丝带的打包方式,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,点E为AD的中点,延长CE交BA的延长线于点F.
(1)求证:AB=AF;
(2)若BC=2AB,∠BCD=110°,求∠ABE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A(m,6),B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.
(1)求m,n的值并写出反比例函数的表达式;
(2)当时,直接写出的取值范围
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是( )
A. (2,5)B. (5,2)C. (2,﹣5)D. (5,﹣2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知I是△ABC的内心,AI延长线交△ABC外接圆于D,连BD.
(1)在图1中,求证:DB=DI;
(2)如图2,若AB为直径,且OI⊥AD于I点,DE切圆于D点,求sin∠ADE的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com