精英家教网 > 初中数学 > 题目详情
抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-2,-1),与x轴有两个交点且交点间的距离是2,则这个抛物线的解析式为y=______.
∵抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-2,-1),
∴抛物线的对称轴为直线x=-2,
∵抛物线与x轴有两个交点间的距离是2,
∴抛物线与x轴两交点的坐标分别为(-3,0)、(-1,0),
设抛物线的解析式为y=a(x+3)(x+1),
把(-2,-1)代入得a×(-2+3)×(-2+1)=-1,解得a=1,
∴抛物线的解析式为y=(x+3)(x+1)=x2+4x+3.
故答案为y=x2+4x+3.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在直角坐标系中,⊙A的半径为4,A的坐标为(2,0),⊙A与x轴交于E,F两点,与y轴交于C、D两点,过C点作⊙A的切线BC交x轴于B
(1)求直线BC的解析式;
(2)若抛物线y=ax2+bx+c的顶点在直线BC上,与x轴的交点恰为⊙A与x轴的交点,求抛物线的解析式;
(3)问C点是否在所求的抛物线上?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,抛物线与x轴交于点(-1,0)和(3,0),与y轴交于点(0,-3)则此抛物线对此函数的表达式为(  )
A.y=x2+2x+3B.y=x2-2x-3C.y=x2-2x+3D.y=x2+2x-3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于50%,经试销发现,销售量y(件)与销售单价x(元)的关系符合一次函数y=-x+140.
(1)直接写出销售单价x的取值范围.
(2)若销售该服装获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价为多少元时,可获得最大利润,最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,桥拱是抛物线形,其函数解析式是y=-
1
4
x2,当水位线在AB位置时,水面宽为12米,这时水面离桥顶的高度h是______米.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D,连接BC,BC与抛物线的对称轴交于点E.
(1)求点B、点C的坐标和抛物线的对称轴;
(2)求直线BC的函数关系式;
(3)点P为线段BC上的一个动点,过点P作PFDE交抛物线于点F.设点P的横坐标为m;用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,二次函数y=ax2+bx-7的图象交x轴于A,B两点,交y轴于点D,点C为抛物线的顶点,且A,C两点的横坐标分别为1和4.
(1)求A,B两点的坐标;
(2)求二次函数的函数表达式;
(3)在(2)的抛物线上,是否存在点P,使得∠BAP=45°?若存在,求出点P的坐标及此时△ABP的面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

甲、乙两人进行羽毛球比赛,甲发出一颗十分关键的球,出手点为P,羽毛球飞行的水平距离s(米)与其距地面高度h(米)之间的关系式为h=-
1
12
s2+
2
3
s+
3
2
.如图,已知球网AB距原点5米,乙(用线段CD表示)扣球的最大高度为
9
4
米,设乙的起跳点C的横坐标为m,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则m的取值范围是(  )
A.5<m<9B.5<m<4+
7
C.4<m<8+
7
D.5<m<4-
7

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:抛物线y=-x2+4x-3与x轴相交于A、B两点(A点在B点的左侧),顶点为P.
(1)求A、B、P三点坐标;
(2)在下面的直角坐标系内画出此抛物线的简图,并根据简图写出当x取何值时,函数值y大于零;
(3)确定此抛物线与直线y=-2x+6公共点的个数,并说明理由.

查看答案和解析>>

同步练习册答案