精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,开口向上的抛物线与x轴交于A、B两点,D为抛物线的顶点,O为坐标原点.若OA、OB(OA<OB)的长分别是方程x2-4x+3=0的两根,且∠DAB=45°.
(1)求抛物线对应的二次函数解析式;
(2)过点A作AC⊥AD交抛物线于点C,求点C的坐标;
(3)在(2)的条件下,过点A任作直线l交线段CD于点P,若点C、D到直线l的距离分别记为d1、d2,试求的d1+d2的最大值.
(1)解方程x2-4x+3=0得:
x=1或x=3,而OA<OB,
则点A的坐标为(-1,0),点B的坐标为(3,0);(1分)
∵A、B关于抛物线对称轴对称,
∴△DAB是等腰三角形,而∠DAB=45°,
∴△DAB是等腰直角三角形,得D(1,-2);
令抛物线对应的二次函数解析式为y=a(x-1)2-2,
∵抛物线过点A(-1,0),
∴0=4a-2,得a=
1
2

故抛物线对应的二次函数解析式为y=
1
2
(x-1)2-2(或写成y=
1
2
x2-x-
3
2
);(4分)

(2)∵CA⊥AD,∠DAC=90°,(5分)
又∵∠DAB=45°,
∴∠CAB=45°;
令点C的坐标为(m,n),则有m+1=n,(6分)
∵点C在抛物线上,
∴n=
1
2
(m-1)2-2;(7分)
化简得m2-4m-5=0
解得m=5,m=-1(舍去),
故点C的坐标为(5,6);(8分)

(3)由(2)知AC=6
2
,而AD=2
2

∴DC=
AD2+AC2
=4
5

过A作AM⊥CD,
又∵
1
2
AC×AD=
1
2
DC×AM

∴AM=
24
4
5
=
6
5
5
,(9分)
又∵S△ADC=S△APD+S△APC
1
2
×AC×AD=
1
2
AP×d1+
1
2
AP×d2
,(11分)
d1+d2=
24
AP
24
AM
=24×
5
6
5
=4
5

即此时d1+d2的最大值为4
5
.(12分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:抛物线y=ax2+4ax+t与x轴的一个交点为A(-1,0),另一个交点为B.
(1)求点B的坐标;
(2)D是抛物线与y轴的交点,C是抛物线上的一点,且以AB为一底的梯形ABCD的面积为9,求此抛物线的解析式;
(3)已知直线y=k与抛物线不相交,且抛物线上任意一点到这条直线的距离与这一点到点F(-2,-
3
4
a
)的距离相等,则k的值为______.(直接写答案)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=a(x+1)2+m的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于C,顶点为M,直线MC的解析式为y=kx-3,且直线MC与x轴交于点N,sin∠BCO=
10
10

(1)求直线MC及二次函数的解析式;
(2)在二次函数的图象上是否存在点P(异于点C),使以点P、N、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy内,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C.把直线y=-x-3沿y轴翻折后恰好经过B、C两点.
(1)求抛物线的解析式;
(2)设抛物线的顶点为D,在坐标轴上是否存在这样的点F,使得∠DFB=∠DCB?若存在,求出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(1),在平面直角坐标系中二次函数y=-x2+bx+c的图象经过点A(1,-2),B(3,-1)
(1)求抛物线的解析式及顶点C的坐标;
(2)请问在y轴上是否存在点P,使得S△ABC=S△ABP?若存在,求出点P的坐标;若不存在,请说明理由;
(3)请在图(2)上用尺规作图的方式探究抛物线上是否存在点Q,使得△QAB是等腰三角形?若存在,请判断点Q共有几个可能的位置(保留作图痕迹);若不存在,请说明理由(不用证明).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=-x2+bx+c(c>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.
(1)求二次函数的解析式;
(2)点P为线段BM上的一个动点,过点P作x轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;
(3)探索:线段BM上是否存在点N,使△NMC为等腰三角形?如果存在,求出点N的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

暑假期间,北关中学对网球场进行了翻修,在水平地面点A处新增一网球发射器向空中发射网球,网球飞行线路是一条抛物线(如图所示),在地面上落点为B.有同学在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内,已知AB=4m,AC=3m,网球飞行最大高度OM=5m,圆柱形桶的直径为0.5m,高为0.3m(网球的体积和圆柱形桶的厚度忽略不计),以M点为顶点,抛物线对称轴为y轴,水平地面为x轴建立平面直角坐标系.
(1)请求出抛物线的解析式;
(2)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内?
(3)当竖直摆放圆柱形桶多少个时,网球可以落入桶内?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,从10米的窗口A用水管向外喷水,喷出的水流呈抛物线状(抛物线所在平面与墙面垂直),如果抛物线的最高点M距离1米,离地面
40
3
米,试求水流落在点B距墙的距离OB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,把矩形COAB绕点C顺时针旋转α角,得到矩形CFED.设FC与AB交于点H,且A(0,4),C(6,0)(如图1).
(1)当α=60°时,△CBD的形状是______;
(2)当AH=HC时,求直线FC的解析式;
(3)当α=90°时,(如图2).请探究:经过点D,且以点B为顶点的抛物线,是否经过矩形CFED的对称中心M,并说明理由.

查看答案和解析>>

同步练习册答案