精英家教网 > 初中数学 > 题目详情
精英家教网如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,设AC=b,BC=a,CD=h,AB=c,下面有3个命题:(1)
1
a2
+
1
b2
=
1
h2
;(2)a+b<c+h;(3)以a+b,h,c+h为边的三角形是直角三角形.其中正确命题的个数是(  )
A、0B、1C、2D、3
分析:(1)先根据勾股定理用a、b表示出AB的长,再由S△ABC=
1
2
AC•BC=
1
2
AB•CD解答即可;
(2)先证(3)a+b,h,c+h为边的三角形是直角三角形成立,再由三角形的三边关系求解;
(3)先分别求出(a+b)2,h2,(c+h)2的值,再根据勾股定理的逆定理进行判断即可.
解答:解:(1)∵Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=b,BC=a,CD=h,AB=c,
∴c=
a2+b2

∴S△ABC=
1
2
ab=
1
2
ch,
∴h=
ab
c
,h2=
a2b2
c2

1
h2
=
c2
a2b2
,即
1
h2
=
a2+b2
a2b2
=
1
a2
+
1
b2
,故(1)正确;

(2)∵
1
2
ab=
1
2
ch,
∴ab=ch,即a2b2=c2h2
∴(a+b)2-a2-b2=(c+h)2-c2-h2
∴(c+h)2-(a+b)2=c2-a2-b2+h2
∵a2+b2=c2
∴(c+h)2-(a+b)2=h2
∵h>0,且a b c h均为线段.
∴a>0,b>0,c>0,h>0,
∴c+h>a+b,故(3)正确;

(3)∵(c+h)2=c2+2ch+h2
h2+(a+b)2=h2+a2+2ab+b2,a2+b2=c2(勾股定理),ab=ch(面积公式推导),
∴c2+2ch+h2=h2+a2+2ab+b2
∴(c+h)2=h2+(a+b)2
∴根据勾股定理的逆定理知道以h,c+h,a+b为边构成的三角形是直角三角形,故正确.
故选D.
点评:本题考查的是勾股定理的逆定理及三角形的面积公式,熟知勾股定理的逆定理是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案