【题目】如图,AC为正方形ABCD的对角线,点E为DC边上一点(不与C、D重合),连接BE,以E为旋转中心,将线段EB逆时针旋转90°,得到线段EF,连接DF.
(1)请在图中补全图形.
(2)求证:AC∥DF.
(3)探索线段ED、DF、AC的数量关系,并加以证明.
【答案】(1)见解析;(2)见解析;(3)DF+ED=AC,见解析
【解析】
(1)由题意直接根据旋转的定义,进行作图即可;
(2)根据题意作FG⊥CD,交CD的延长线于点G,证△BCE≌△EGF得BC=EG,CE=FG,由BC=CD知CE=DG.从而得DG=FG,据此知∠FDG=45°,继而得出∠3=∠4=45°,从而得证;
(3)根据题意由∠3=45°知AC=DC.由∠DFG=45°知DF=CE,结合CD=CE+DE=DE+EG得CD=DE+DF,从而知AC=DC=(DE+DF)=DF+ED.
解:(1)如图1所示,
(2)证明:理由如下:
如上图,过点F作FG⊥CD,交CD的延长线于点G.
∴∠BEF=90°,
∴∠2+∠BEC=90°,
∵∠1+∠BEC=90°,
∴∠2=∠1,
∵BE=EF,∠BCD=∠FGE,
∴△BCE≌△EGF(AAS),
∴BC=EG,CE=FG,
又∵BC=CD,
∴CE=DG,
∴DG=FG,
∴∠FDG=45°,
∴∠3=∠4=45°,
∴AC∥DF.
(3)线段ED、DF、AC的数量关系为:DF+ED=AC,
理由如下:在Rt△ABC中∠3=45°,
因此AC=DC.
∵CD=CE+DE=DE+EG,
在Rt△ABC中∠DFG=45°,DF=CE,即,
∴CD=CE+DE=DE+DF,
∴AC=DC=(DE+DF)=DF+ED.
科目:初中数学 来源: 题型:
【题目】下面是小明设计的“过直线外一点作已知直线的平行线”的尺规作图过程.
已知:直线及直线外一点P.
求作:直线,使.
作法:如图,
①在直线上取一点O,以点O为圆心,长为半径画半圆,交直线于两点;
②连接,以B为圆心,长为半径画弧,交半圆于点Q;
③作直线.
所以直线就是所求作的直线.
根据小明设计的尺规作图过程:
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明
证明:连接,
∵,
∴__________.
∴(______________)(填推理的依据).
∴(_____________)(填推理的依据).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)进行统计.请你根据下面尚未完成的频率分布表和频率分布直方图,解答下列问题:
(1)填充频率分布表中的空格;
(2)补全频率分布直方图;
(3)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(不要求说明理由)
频率分布表 | ||
分组 | 频数 | 频率 |
50.5~60.5 | 4 | 0.08 |
60.5~70.5 | 8 | 0.16 |
70.5~80.5 | 10 | 0.20 |
80.5~90.5 | 16 | 0.32 |
90.5~100.5 | ||
合计 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB=BC,以BC为直径作⊙O,AC交⊙O于点E,过点E作EG⊥AB于点F,交CB的延长线于点G.
(1)求证:EG是⊙O的切线;
(2)若GF=2,GB=4,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的最大公里数(单位:km/L),如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述正确的是( )
A. 以相同速度行驶相同路程,甲车消耗汽油最多
B. 以10km/h的速度行驶时,消耗1升汽油,甲车最少行驶5千米
C. 以低于80km/h的速度行驶时,行驶相同路程,丙车消耗汽油最少
D. 以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为上一点,且,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;②∠MAN=90°;③;④∠ACM+∠ANM=∠MOB;⑤AE=MF.
其中正确结论的个数是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB、EA,延长BE交边AD于点F.
(1)求证:△ADE≌△BCE;
(2)求∠AFB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】远远在一个不透明的盒子里装了4个除颜色外其他都相同的小球,其中有3个是红球,1个是绿球,每次拿一个球然后放回去,拿2次,则至少有一次取到绿球的概率是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与轴相交于、两点(在的左侧),与轴相交于点C(0,3),且,,抛物线的顶点为.
(1)求、两点的坐标.
(2)求抛物线的表达式.
(3)过点作直线轴,交轴于点,点是抛物线上,两点间的一个动点(点不与、两点重合),、与直线分别相交于点、当点运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com