【题目】如图,直线y=x+3与坐标轴分别交于A,B两点,抛物线y=ax2+bx-3a经过点A,B,顶点为C,连接CB并延长交x轴于点E,点D与点B关于抛物线的对称轴MN对称.
(1)求抛物线的解析式及顶点C的坐标;
(2)求证:四边形ABCD是直角梯形.
【答案】(1)y=-x2-2x+3,顶点C的坐标为(-1,4);(2)证明见解析.
【解析】
(1)解:∵y=x+3与坐标轴分别交与A,B两点,∴A点坐标(-3,0)、B点坐标(0,3).
∵抛物线y=ax2+bx-3a经过A,B两点,
∴
解得
∴抛物线解析式为:y=-x2-2x+3.
∵y=-x2-2x+3=-(x+1)2+4,
∴顶点C的坐标为(-1,4).
(2)证明:∵B,D关于MN对称,C(-1,4),B(0,3),
∴D(-2,3).∵B(0,3),A(-3,0),∴OA=OB.
又∠AOB=90°,∴∠ABO=∠BAO=45°.
∵B,D关于MN对称,∴BD⊥MN.
又∵MN⊥x轴,∴BD∥x轴.
∴∠DBA=∠BAO=45°.
∴∠DBO=∠DBA+∠ABO=45°+45°=90°.
设直线BC的解析式为y=kx+b,
把B(0,3),C(-1,4)代入得,
解得
∴y=-x+3.
当y=0时,-x+3=0,x=3,∴E(3,0).
∴OB=OE,又∵∠BOE=90°,
∴∠OEB=∠OBE=∠BAO=45°.
∴∠ABE=180°-∠BAE-∠BEA=90°.
∴∠ABC=180°-∠ABE=90°.
∴∠CBD=∠ABC-∠ABD=45°.
∵CM⊥BD,∴∠MCB=45°.
∵B,D关于MN对称,
∴∠CDM=∠CBD=45°,CD∥AB.
又∵AD与BC不平行,∴四边形ABCD是梯形.
∵∠ABC=90°,∴四边形ABCD是直角梯形.
科目:初中数学 来源: 题型:
【题目】如图,在中,,,请你按照下面要求完成尺规作图.
①以点为圆心,长为半径画弧,交于点,
②再分别以,为圆心,大于的长为半径画弧,两弧交于点,
③连接并延长交于点.
请你判断以下结论:
①是的一条角平分线;②连接,是等边三角形;③;
④点在线段的垂直平分线上;⑤.其中正确的结论有________(只需要写序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的长AB=30,宽BC=20.
(1)如图(1)若沿矩形ABCD四周有宽为1的环形区域,图中所形成的两个矩形ABCD与A′B′C′D′相似吗?请说明理由;
(2)如图(2),x为多少时,图中的两个矩形ABCD与A′B′C′D′相似?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0,其中正确的个数为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB,标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,求建筑物的高.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,M、N分别是边AD、BC的中点,点P、Q在DC边上,且PQ=DC.若AB=16,BC=20,则图中阴影部分的面积是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“低碳环保,绿色出行”的理念得到广大群众的接受,越来越多的人喜欢选择自行车作为出行工具小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程米与时间分钟的关系如图,请结合图象,解答下列问题:
______,______,______;
若小军的速度是120米分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;
在的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016湖南省株洲市)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.
(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?
(2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?
(3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com