精英家教网 > 初中数学 > 题目详情
1.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:
①2a+b=0
②当-1≤x≤3时,y<0
③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2 
④9a+3b+c=0
其中正确的有(填写正确的序号)①④.

分析 根据抛物线对称轴可判断①;根据图象知当-1≤x≤3时图象位于x轴下方或在x轴上,可判断②;根据函数对称轴即可判断增减性,可判断③;由图象过(3,0)可判断④.

解答 解:由图象可知,当x=-1时,y=0;当x=3时,y=0;
∴抛物线解析式为x=1,即-$\frac{b}{2a}$=1,得:2a+b=0,故①正确;
当-1≤x≤3时,y≤0,故②错误;
当x1<x2<1时,y1>y2,故③错误;
∵抛物线过(3,0),
∴将(3,0)代入得:9a+3b+c=0,故④正确;
故答案为:①④.

点评 本题考查了二次函数图象与系数的关系,解题的关键是结合图象逐条分析.解决该题型题目时,结合图象上的点找出二次函数各系数间的关系是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

11.下列计算正确的是(  )
A.x2+x3=x5B.x2•x3=x6C.x6÷x3=x3D.(x32=x9

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.(1)如图,试用直尺与圆规在平面内确定一点O,使得点O到△ABC的两边AB、AC的距离相等,并且点O到B、C两点的距离也相等.(不写作法,但需保留作图痕迹)
(2)在(1)中,作OM⊥AB于M,ON⊥AC于N,连结BO、CO.求证:△OMB≌△ONC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.2016年第31届夏季奥运会将于8月5日~21日在巴西里约举行,某九年一贯制学校为了了解本校学生对本届奥运会的关注程度,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和关注程度,分别绘制了条形统计图(图1)和扇形统计图(图2)
(1)直接写出四个年级被调查人数的中位数是多少?
(2)若“特别关注”人数与“一般关注”人数的比是1:3,请把所对应的扇形图表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.解方程:$\frac{1}{x-1}$+$\frac{3x-{x}^{2}}{1-{x}^{2}}$+2=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.计算.
(1)($\sqrt{54}$-$\sqrt{0.5}$+3$\sqrt{\frac{2}{3}}$)-(8$\sqrt{\frac{2}{3}}$-$\sqrt{2}$)
(2)(3$\sqrt{\frac{3}{5}}$-$\sqrt{15}$)(3$\sqrt{\frac{5}{3}}$+$\sqrt{15}$)
(3)$\frac{\sqrt{3a}}{2b}$($\sqrt{\frac{b}{a}}$÷2$\sqrt{\frac{1}{b}}$)
(4)(2$\sqrt{3}$-3$\sqrt{2}$)(3$\sqrt{2}$+2$\sqrt{3}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.解下列不等式组:
(1)$\left\{\begin{array}{l}{\frac{x-3}{2}+3≥x}\\{1-3(x-1)<8-x}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{2x+4≤5(x+2)}\\{x-1<\frac{2}{3}x}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.已知方程组$\left\{\begin{array}{l}{3m-5n=13}\\{5m+11n=41}\end{array}\right.$的解为$\left\{\begin{array}{l}{m=6}\\{n=1}\end{array}\right.$,则方程组$\left\{\begin{array}{l}{3(x+y)-5(x-y)=13}\\{5(x+y)+11(x-y)=41}\end{array}\right.$的解为$\left\{\begin{array}{l}{x=\frac{7}{2}}\\{y=\frac{5}{2}}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在△ABC中,∠ACB=90°,CD⊥AB.垂足为D,E是AC的中点,ED、CB的延长线于点F.
(1)求证;△FDB∽△FCD;
(2)如果AC=3,BC=2,求△CBD、△FDB的面积.

查看答案和解析>>

同步练习册答案