分析 先由旋转的性质,判断出△BCE∽△BAD,得出结论再判断出△BOC∽△FOA,再用锐角三角函数求解即可
解答 解:如图,
由旋转得,∠ABC=∠DBE,BC=BE,BA=BD,
∴∠CBE=∠ABD,
∴△BCE∽△BAD,
∴∠BCE=∠BAD,
∵∠COB=∠AOF,
∴△BOC∽FOA,
∵OC=BC=3,
∴AO=AF.
作CI⊥AB,
∴∠BCI=∠BAC,BI=OI,
∴sin∠BCI=$\frac{BI}{BC}=\frac{BI}{3}$=sin∠BAC=$\frac{1}{3}$,
∴AB=9,BI=1=OI,BO=2,
∴AF=AO=AB-BO=7.
故答案为7.
点评 此题是旋转的性质题,主要考查了相似三角形的性质和判定,锐角三角函数的意义,旋转的性质,解本题的关键是锐角三角函数的意义的应用.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com