精英家教网 > 初中数学 > 题目详情
精英家教网如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动,以BE为边,在BE的上方作正方形BEFG,连接CG.请探究:
(1)线段AE与CG是否相等请说明理由:
(2)若设AE=x,DH=y,当x取何值时,y最大?
(3)连接BH,当点E运动到AD的何位置时,△BEH∽△BAE?
分析:(1)AE=CG,要证结论,必证△ABE≌△CBG,由正方形的性质很快确定∠3=∠4,又AB=BC,BE=BG,符合SAS即证.
(2)先证△ABE∽△DEH,所以
DH
AE
=
DE
AB
,即可求出函数解析式y=-x2+x,继而求出最值.
(3)要使△BEH∽△BAE,需
AE
AB
=
EH
BE
,又因为△ABE∽△DEH,所以
EH
BE
=
DH
AE
=
1
2
,即
AE
AB
=
1
2
,所以当E点是AD的中点时,△BEH∽△BAE.
解答:精英家教网解:(1)AE=CG.
理由:正方形ABCD和正方形BEFG中,
∠3+∠5=90°,
∠4+∠5=90°,
∴∠3=∠4.
又AB=BC,BE=BG,
∴△ABE≌△CBG.
∴AE=CG.

(2)∵正方形ABCD和正方形BEFG,
∴∠A=∠D=∠FEB=90°.
∴∠1+∠2=90°∠2+∠3=90°.
∴∠1=∠3.
又∵∠A=∠D,
∴△ABE∽△DEH.
DH
AE
=
DE
AB

y
x
=
1-x
1

∴y=-x2+x
=-(x-
1
2
2+
1
4

当x=
1
2
时,y有最大值为
1
4


(3)解:当E点是AD的中点时,△BEH∽△BAE,
理由:∵E是AD中点,
∴AE=
1
2

∴DH=
1
4

又∵△ABE∽△DEH,
EH
BE
=
DH
AE
=
1
2

又∵
AE
AB
=
1
2

AE
AB
=
EH
BE

又∠DAB=∠FEB=90°,
∴△BEH∽△BAE.
点评:本题结合正方形的性质考查二次函数的综合应用,以及正方形的性质和相似三角形的判定
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案