精英家教网 > 初中数学 > 题目详情

如图,BD是⊙O的直径,AB与⊙O相切于点B,过点D作OA的平行线交⊙O于点C,AC与BD的延长线相交于点E.

(1)试探究A E与⊙O的位置关系,并说明理由;

(2)已知EC=a,ED=b,AB=c,请你思考后,选用以上适当的数据,设计出计算⊙O的半径r的一种方案:

①你选用的已知数是        

   ②写出求解过程(结果用字母表示).

解:(1)A E与⊙O相切.

理由:连接OC.

∵CD∥OA   ∴

又∵ODOC,  ∴.∴

  在△AOC和△AOB中

   OA=OA, ,OB=OC,

∴△AOC≌△AOB,  ∴

∵AB与⊙O相切,   ∴=90°.

∴A E与⊙O相切.

(2)①选择a、b、c,或其中2个

② 解答举例:

若选择a、b、c,

方法一:由CD∥OA, ,得

方法二:在Rt△ABE中 ,由勾股定理

            方法三:由Rt△OCE∽Rt△ABE,,得

若选择a、b

 方法一:在Rt△OCE中 ,由勾股定理:,得

方法二:连接BC,由△DCE∽△CBE,得

若选择a、c;需综合运用以上多种方法,得

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是一个边长为2的等边三角形,D、E都在直线BC上,并且∠DAE=120°
(1)设BD=x,CE=y,求y与x直间的函数关系式;
(2)在上题中一共有几对相似三角形,分别指出来(不必证明)
(3)改变原题的条件为AB=AC=2,∠BAC=β,∠DAE=α,α、β之间要满足什么样的关系,能使(1)中y与x的关系式仍然成立?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,等边△ABC的边AB与正方形DEFG的边长均为2,且AB与DE在同一条直线上,开始时点B与点D重合,让△ABC沿这条直线向右平移,直到点B与点E重合为止,设BD的长为x,△ABC与正方形DEFG重叠部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

泰勒斯是古希腊哲学家,相传他利用三角形全等的方法求出岸上一点到海中一艘船的距离.如图,B是观察点,船A在B的正前方,过B作AB的垂线,在垂线上截取任意长BD,C是BD的中点,观察者从点D沿垂直于BD的DE方向走,直到点E、船A和点C在一条直线上,那么△ABC≌△EDC,从而量出DE的距离即为船离岸的距离AB,这里判定△ABC≌△EDC的方法是(  )

查看答案和解析>>

科目:初中数学 来源:2012年重庆市开县西街中学中考数学一模试卷(解析版) 题型:选择题

如图,等边△ABC的边AB与正方形DEFG的边长均为2,且AB与DE在同一条直线上,开始时点B与点D重合,让△ABC沿这条直线向右平移,直到点B与点E重合为止,设BD的长为x,△ABC与正方形DEFG重叠部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源:2011年黄冈教育阳江培训中心中考数学模拟试卷(5)(解析版) 题型:解答题

如图,△ABC是一个边长为2的等边三角形,D、E都在直线BC上,并且∠DAE=120°
(1)设BD=x,CE=y,求y与x直间的函数关系式;
(2)在上题中一共有几对相似三角形,分别指出来(不必证明)
(3)改变原题的条件为AB=AC=2,∠BAC=β,∠DAE=α,α、β之间要满足什么样的关系,能使(1)中y与x的关系式仍然成立?说明理由.

查看答案和解析>>

同步练习册答案