精英家教网 > 初中数学 > 题目详情

【题目】已知:顺次连接矩形各边的中点,得到一个菱形,如图①;再顺次连接菱形各边的中点,得到一个新的矩形.如图②;然后顺次连接新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第3个图形中直角三角形的个数有______个,第2018个图形中直角三角形的个数有______个.

【答案】8 4036

【解析】

写出前几个图形中的直角三角形的个数,并找出规律,当n为奇数时,三角形的个数是2n1),当n为偶数时,三角形的个数是2n,根据此规律求解即可.

解:第1个图形,有4个直角三角形,

2个图形,有4个直角三角形,

3个图形,有8个直角三角形,

4个图形,有8个直角三角形,

依此类推,当n为奇数时,三角形的个数是2n+1),当n为偶数时,三角形的个数是2n个,

所以,第2018个图形中直角三角形的个数是2×2018=4036

故答案是:84036

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=﹣x2+bx的图象与x轴的正半轴交于点A(4,0),过A点的直线与y轴的正半轴交于点B,与二次函数的图象交于另一点C,过点C作CHx轴,垂足为H.设二次函数图象的顶点为D,其对称轴与直线AB及x轴分别交于点E和点F.

(1)求这个二次函数的解析式;

(2)如果CE=3BC,求点B的坐标;

(3)如果DHE是以DH为底边的等腰三角形,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,由边长均为1个单位的小正方形组成的网格图中,点都在格点上。

1的面积为__________________________

2)以为边画出一个与全等的三角形,并进一步探究:满足条件的三角形可以作出_____

3)在直线上确定点,使的长度最短.(画出示意图,并标明点的位置即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:

污水处理设备

A型

B型

价格(万元/台)

m

m-3

月处理污水量(吨/台)

220

180

(1)求m的值;

(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD中,对角线ACBD相交于点O,给出下列四组条件:①AB∥CDAD∥BC②AB=CDAD=BC③AO=COBO=DO④AB∥CDAD=BC。其中一定能判断这个四边形是平行四边形的条件共有

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O为原点,点A(1,0),点B(0, ),把△ABO绕点O顺时针旋转,得A′B′O,记旋转角为α.

(Ⅰ)如图①,当α=30°时,求点B′的坐标;

(Ⅱ)设直线AA′与直线BB′相交于点M.

如图②,当α=90°时,求点M的坐标;

②点C(﹣1,0),求线段CM长度的最小值.(直接写出结果即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】Rt△ABC中,∠A=90°,有一个锐角为60°BC=6.若点P在直线AC上(不与点AC重合),且∠ABP=30°,则CP的长为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,过点C的直线MNABDAB边上一点,过点DDEBC,交直线MNE,垂足为F,连接CDBE

1)求证:CEAD

2)当DAB中点时,四边形BECD是什么特殊四边形?说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠BAC=90°,将△ABC绕点C逆时针旋转,旋转后的图形是△A′B′C,点A的对应点A′落在中线AD上,且点A′△ABC的重心,A′B′BC相交于点E,那么BECE=

查看答案和解析>>

同步练习册答案