£¨2012•·ą́Çøһģ£©ÒÑÖª£º¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£ºx2-2mx+m2-4=0£®
£¨1£©ÇóÖ¤£ºÕâ¸ö·½³ÌÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£»
£¨2£©µ±Å×ÎïÏßy=x2-2mx+m2-4ÓëxÖáµÄ½»µãλÓÚÔ­µãµÄÁ½²à£¬ÇÒµ½Ô­µãµÄ¾àÀëÏàµÈʱ£¬Çó´ËÅ×ÎïÏߵĽâÎöʽ£»
£¨3£©½«£¨2£©ÖеÄÅ×ÎïÏßÔÚxÖáÏ·½µÄ²¿·ÖÑØxÖá·­ÕÛ£¬ÆäÓಿ·Ö±£³ÖÄܹ»²»±ä£¬µÃµ½Í¼ÐÎC1£¬½«Í¼ÐÎC1ÏòÓÒƽÒÆÒ»¸öµ¥Î»£¬µÃµ½Í¼ÐÎC2£¬µ±Ö±Ïßy=x+b£¨b£¼1£©ÓëͼÐÎC2Ç¡ÓÐÁ½¸ö¹«¹²µãʱ£¬Ð´³öbµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©¸ù¾ÝÒªÖ¤·½³ÌÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£¬Ö»ÒªÖ¤³ö¡÷=b2-4ac£¾0£¬¼´¿ÉµÃ³ö´ð°¸£»
£¨2£©ÀûÓöþ´Îº¯ÊýµÄ¶Ô³ÆÐԵóö¶Ô³ÆÖáÊÇyÖᣬ½ø¶øµÃ³ömµÄÖµ¼´¿É£»
£¨3£©»­³ö·­×ªºóеĺ¯ÊýͼÏó£¬ÓÉÖ±Ïßy=x+b£¬b£¼1È·¶¨³öÖ±ÏßÒƶ¯µÄ·¶Î§£¬Çó³öbµÄÈ¡Öµ·¶Î§£®
½â´ð£º£¨1£©Ö¤Ã÷¡ß¡÷=£¨-2m£©2-4£¨m2-4£©=16£¾0£®
¡à¸Ã·½³Ì×ÜÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£®

£¨2£©ÓÉÌâÒâ¿ÉÖªyÖáÊÇÅ×ÎïÏߵĶԳÆÖᣬ
¹Ê-2m=0£¬
½âµÃm=0£®
¡à´ËÅ×ÎïÏߵĽâÎöʽΪy=x2-4£®

£¨3£©Èçͼ£¬µ±Ö±Ïßy=x+b¾­¹ýA£¨-1£¬0£©Ê±-1+b=0£¬
¿ÉµÃb=1£¬ÓÖÒòΪb£¼1£¬
¹Ê¿ÉÖªy=x+bÔÚy=x+1µÄÏ·½£¬
µ±Ö±Ïßy=x+b¾­¹ýµãB£¨3£¬0£©Ê±£¬3+b=0£¬Ôòb=-3£¬
ÓÉͼ¿ÉÖª·ûºÏÌâÒâµÄbµÄÈ¡Öµ·¶Î§Îª-3£¼b£¼1ʱ£¬Ö±Ïßy=x+b£»£¨b£¼3£©Óë´ËͼÏóÓÐÁ½¸ö¹«¹²µã£®
µãÆÀ£º±¾Ì⿼²éÁ˸ùµÄÅбðʽÒÔ¼°¶þ´Îº¯ÊýµÄ¶Ô³ÆÐÔºÍÓɺ¯ÊýͼÏóÈ·¶¨×ø±ê¡¢Ö±ÏßÓëͼÏóµÄ½»µãÎÊÌ⣬×ÛºÏÌåÏÖÁËÊýÐνáºÏµÄ˼Ï룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•·ą́Çøһģ£©ÏÂÁÐͼÐÎÖУ¬ÊÇÕý·½ÌåµÄƽÃæÕ¹¿ªÍ¼µÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•·ą́Çøһģ£©½â²»µÈʽ×飺
4x+8£¾0
5-2(x-1)£¾1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•·ą́Çøһģ£©ÒÑÖª£ºÈçͼ£¬AB¡ÎCD£¬AB=CD£¬µãE¡¢FÔÚÏ߶ÎADÉÏ£¬ÇÒAF=DE£®ÇóÖ¤£ºBE=CF£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•·ą́Çøһģ£©ÒÑÖª£º¡÷ABCºÍ¡÷ADEÊÇÁ½¸ö²»È«µÈµÄµÈÑüÖ±½ÇÈý½ÇÐΣ¬ÆäÖÐBA=BC£¬DA=DE£¬Á¬½ÓEC£¬È¡ECµÄÖеãM£¬Á¬½ÓBMºÍDM£®
£¨1£©Èçͼ1£¬Èç¹ûµãD¡¢E·Ö±ðÔÚ±ßAC¡¢ABÉÏ£¬ÄÇôBM¡¢DMµÄÊýÁ¿¹ØϵÓëλÖùØϵÊÇ
BM=DMÇÒBM¡ÍDM
BM=DMÇÒBM¡ÍDM
£»
£¨2£©½«Í¼1Öеġ÷ADEÈƵãAÐýתµ½Í¼2µÄλÖÃʱ£¬Åжϣ¨1£©ÖеĽáÂÛÊÇ·ñÈÔÈ»³ÉÁ¢£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸