精英家教网 > 初中数学 > 题目详情
已知:如图,在平面直角坐标系中,正方形 OABC的顶点B的坐标为(2,2),A、C两点分别在x轴、y轴上.P是BC边上一点(不与B点重合),连AP并延长与x轴交于点E,当点P在边BC上移动时,△AOE的面积随之变化.
①设PB=a(0<a≤2).求出△AOE的面积S与a的函数关系式.
②根据①的函数关系式,确定点P在什么位置时,S△AOE=2,并求出此时直线AE的解析式.
③在所给的平面直角坐标系中画出①中函数的图象和函数S=-a+2的简图.
④设函数S=-a+2的图象交a轴于点G,交S轴于点D,点M是①的函数图象上的一动点,过M点向S轴作垂线交函数S=-a+2的图象于点H,过M点向a轴作垂线交函数S=-a+2的图象于点Q,请问DQ•HG的值是否会变化?若不变,精英家教网请求出此值;若变化,请说明理由.
分析:①由相似可以求出OE,△AOE是直角三角形,可以直接求出△AOE的面积.
②把S=2代入得到a=2,PB=2,此时E点与C点重合,求出E点坐标,运用待定系数法求出直线AE的解析式.
③利用描点法画出一次函数和反比例函数的图象.
④通过作辅助线得到△HRG和△DNQ均为等腰直角三角形,利用勾股定理用含a的式子表示出HG、DQ的值,从而求出定值.
解答:解:①∵B(2,2),且四边形ABCO是正方形.
∴AB=BC=OC=AO=2
∵PB=a
∴PC=2-a
∵△PCE∽△AOE
∴PC:AO=EC:OE
即(2-a):2=(0E-2):OE
解得:OE=
4
a

S=
4
a
(0<a≤2);

②当S=2时,2=
4
a

求得:a=2,
∴OE=2,
∴E点C点P点重合.
∴P(2,0)
∴E(2,0),设直线AE的解析式为:y=kx+b则有:精英家教网
2=b
0=2k+b
解得:
k=-1
b=2

直线AE的解析式为:y=-x+2;

③作图为:S=
4
a
(0<a≤2)与s=-a+2的图象为:

④DQ•HG的值是不会变化的
设M点坐标为(t,
4
t
)
,过H作HR垂直于a轴垂足为R,
过D作DN垂直于MQ垂足为N,易得HR=
4
t
,DN=t,
易证△HRG和△DNQ均为等腰直角三角形,由勾股定理得HG=
4
2
t
,DQ=
2
t

所以DQ•HG=
4
2
t
2
t
=8.
点评:本题是一道一次函数和反比例函数的综合试题,考查了待定系数法求函数的解析式,描点法画函数图象、等腰直角三角形的性质以及勾股定理的运用等多个知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直y=
3
2
x+b
与双曲线y=
16
x
相交于第一象限内的点A,AB、AC分别垂直于x轴、y轴,垂足分别为B、C,已知四边形ABCD是正方形,求直线所对应的一次函数的解析式以及它与x轴的交点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,原点O处有一乒乓球发射器向空中发射乒乓球,乒乓球飞行路线是一条抛物线,在地面上落点落在X轴上为点B.有人在线段OB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让乒乓球落入桶内.已知OB=4米,OC=3米,乒乓球飞行最大高度MN=5米,圆柱形桶的直径为0.5,高为0.3米(乒乓球的体积和圆柱形桶的厚度忽略不计).
(1)求乒乓球飞行路线抛物线的解析式;
(2)如果竖直摆放5个圆柱形桶时,乒乓球能不能落入桶内?
(3)当竖直摆放圆柱形桶
8,9,10,11或12
8,9,10,11或12
个时,乒乓球可以落入桶内?(直接写出满足条件的一个答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图1,在平面直角坐标系内,直线l1:y=-x+4与坐标轴分别相交于点A、B,与直线l2y=
13
x
相交于点C.
(1)求点C的坐标;
(2)如图1,平行于y轴的直线x=1交直线l1于点E,交直线l2于点D,平行于y轴的直x=a交直线l1于点M,交直线l2于点N,若MN=2ED,求a的值;
(3)如图2,点P是第四象限内一点,且∠BPO=135°,连接AP,探究AP与BP之间的位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2012届重庆万州区岩口复兴学校九年级下第一次月考数学试卷(带解析) 题型:解答题

已知:直角梯形AOBC在平面直角坐标系中的位置如图,若AC∥OB,OC平分∠AOB,CB⊥x轴于B,点A坐标为(3 ,4). 点P从原点O开始以2个单位/秒速度沿x轴正向运动 ;同时,一条平行于x轴的直线从AC开始以1个单位/秒速度竖直向下运动 ,交OA于点D,交OC于点M,交BC于点E. 当点P到达点B时,直线也随即停止运动.

(1)求出点C的坐标;
(2)在这一运动过程中, 四边形OPEM是什么四边形?请说明理由。若
用y表示四边形OPEM的面积 ,直接写出y关于t的函数关系式及t的
范围;并求出当四边形OPEM的面积y的最大值?
(3)在整个运动过程中,是否存在某个t值,使⊿MPB为等腰三角形?
若有,请求出所有满足要求的t值.

查看答案和解析>>

科目:初中数学 来源:2013年浙江省湖州市中考数学模拟试卷(十一)(解析版) 题型:解答题

如图,在平面直角坐标系中,原点O处有一乒乓球发射器向空中发射乒乓球,乒乓球飞行路线是一条抛物线,在地面上落点落在X轴上为点B.有人在线段OB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让乒乓球落入桶内.已知OB=4米,OC=3米,乒乓球飞行最大高度MN=5米,圆柱形桶的直径为0.5,高为0.3米(乒乓球的体积和圆柱形桶的厚度忽略不计).
(1)求乒乓球飞行路线抛物线的解析式;
(2)如果竖直摆放5个圆柱形桶时,乒乓球能不能落入桶内?
(3)当竖直摆放圆柱形桶______个时,乒乓球可以落入桶内?(直接写出满足条件的一个答案)

查看答案和解析>>

同步练习册答案