精英家教网 > 初中数学 > 题目详情

【题目】如图,已知二次函数y1=ax2+bx+c的图象过点A(1,0),B(﹣3,0),C(0,﹣3)

(1)求此二次函数的解析式和顶点坐标;
(2)直线y2=kx+b过B、C两点,请直接写出当y1>y2时,自变量x的取值范围.

【答案】
(1)解:∵二次函数y1=ax2+bx+c的图象过点A(1,0),B(﹣3,0),C(0,﹣3),

,解得

∴二次函数的解析式为:y=x2+2x﹣3,顶点坐标为(﹣1,﹣4)


(2)解:∵B(﹣3,0),C(0,﹣3),

∴当y1>y2时,x<﹣3或x>0


【解析】(1)直接利用待定系数法求出二次函数的解析式,再求出其顶点坐标即可;(2)根据函数图象即可得出结论.
【考点精析】本题主要考查了二次函数的性质的相关知识点,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是边BC中点,两边PE、PF分别交AB、AC于点E、F,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③四边形AEPF的面积=△ABC的面积的一半,④当EF最短时,EF=AP,上述结论始终正确的个数为(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F.

(1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长;
(2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.求证:BE+CF= AB.
(3)如图3,若∠EDF的两边分别交AB,AC的延长线于E、F两点,(2)中的结论还成立吗?如果成立,请证明;如果不成立,请直接写出线段BE,AB,CF之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C′,连接AA′,若∠1=22°,则∠B的度数是(

A.67°
B.62°
C.82°
D.72°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】龟兔首次赛跑之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了龟兔再次赛跑的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:

①兔子和乌龟同时从起点出发;

龟兔再次赛跑的路程为1000米;

③乌龟在途中休息了10分钟;

④兔子在途中750米处追上乌龟.

其中正确的说法共有____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等腰△ABC中,AD⊥BC于点D,且AD= BC,则△ABC底角的度数为(
A.45°
B.75°
C.45°或15°或75°
D.60°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQABPQ两点分别在AC和过点A且垂直于AC的射线AX上运动,问P点运动到离A的距离等于___________时,ΔABC和ΔPQA全等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:
(1)每千克核桃应降价多少元?
(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1都是等腰直角三角形,在线段上,连接的延长线交

(1)猜想线段的关系;(不必证明)

(2)当点内部一点时,使点和点分别在的两侧,其它条件不变.请你在图2中补全图形,则(1)中结论成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案