精英家教网 > 初中数学 > 题目详情
20.下列算式中,与(-3)2相等的是(  )
A.-32B.(-3)×2C.(-3)×(-3)D.(-3)+(-3)

分析 原式利用乘方的意义计算出结果,即可作出判断.

解答 解:(-3)2=9,
A、原式=-9,不相等;
B、原式=-6,不相等;
C、原式=9,相等;
D、原式=-6,不相等,
故选C

点评 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

10.函数y=$\frac{\sqrt{x+2}}{x-1}$中自变量x的取值范围是x≥-2且x≠1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图1,已知抛物线y=$\frac{3}{8}$x2-$\frac{3}{4}$x-3与x轴交于A和B两点(点A在点B的左侧),与y轴相交于点C,顶点为D
(1)求出点A,B,D的坐标;
(2)如图1,若线段OB在x轴上移动,且点O,B移动后的对应点为O′,B′.首尾顺次连接点O′、B′、D、C构成四边形O′′B′DC,请求出四边形O′B′DC的周长最小值.
(3)如图2,若点M是抛物线上一点,点N在y轴上,连接CM、MN.当△CMN是以MN为直角边的等腰直角三角形时,直接写出点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.为确保信息安全,在传输时往往需加密,发送方发出一组密码a,b,c时,则接收方对应收到的密码为A,B,C.双方约定:A=2a-b,B=2b,C=b+c,例如发出1,2,3,则收到0,4,5
(1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?
(2)当接收方收到一组密码2,8,11时,则发送方发出的密码是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,下列三个条件:①AB∥CD,②∠B=∠C,③∠E=∠F.
从中任选两个作为条件,另一个作为结论,共可编出几道数学题,并选一道数学题进行证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.某学校计划组织500人参加社会实践活动,与某公交公司接洽后,得知该公司有A,B型两种客车,它们的载客量和租金如表所示:
  A型客车 B型客车
 载客量(人/辆)4528
 租金(元/辆)400250
经测算,租用A,B型客车共13辆较为合理,设租用A型客车x辆,根据要求回答下列问题:
(1)用含x的代数式填写下表:
  车辆数(辆)载客量(人) 租金(元) 
 A型客车 x 45x400x 
 B型客车 13-x28(13-x) 250(13-x)
(2)采用怎样的租车方案可以使总的租车费用最低,最低为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.感知:如图1,△ABC和△DCE都是等边三角形,点B、D、E在同一条直线上,连接AE.
(1)∠AEC的度数为120°;
(2)线段AE、BD之间的数量关系为AE=BD.
拓展探究
如图2,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,点B、D、E在同一直线上,CM为△DCE中DE边上的高,连接AE.试求∠AEB的度数及判断线段CM、AE、BM之间的数量关系,并说明理由.
解决问题:
如图3,△ABC和△DCE都是等腰三角形,∠ACB=∠DCE=36°,点B、D、E在同一条直线上,则∠EAB+∠ECB=180度.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.若m•23=26,则m=(  )
A.2B.6C.4D.8

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.下列说法中正确的是(  )
A.$\frac{1}{\sqrt{2}}$化简后的结果是$\frac{\sqrt{2}}{2}$B.9的平方根为3
C.$\sqrt{8}$是最简二次根式D.-27没有立方根

查看答案和解析>>

同步练习册答案