精英家教网 > 初中数学 > 题目详情

【题目】如图甲,,垂足分别为,且三个垂足在同一直线上.

1)证明:

2)已知地物线轴交于点,顶点为,如图乙所示,若是抛物线上异于的点,使得,求点坐标(提示:可结合第(1)小题的思路解答)

【答案】(1)证明见解析;(2)

【解析】

1)根据同角的余角相等求出∠A=CPD,然后求出△ABP△PCD相似,再根据相似三角形对应边成比例列式整理即可得证;

2)根据抛物线解析式求出点P的坐标以及点A和点B的坐标,再过点PPCx轴于C,设AQy轴相交于D,然后求出PCAC的长,再根据(1)的结论求出OD的长,从而得到点D的坐标,利用待定系数法求出直线AD的解析式,与抛物线解析式联立求解即可得到点Q的坐标.

1)证明:

2)过

,则Ex,0,

AE=x+1QE=x2-2x-3.

,则

解得

D1,0),

AD=2PD=4.

由(1)得

解得(舍去),

时,

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在四边形ABCD中,BCAD,∠B90°AD边落在平面直角坐标系的x轴上,且点A50)、C03)、AD2.点P从点E(﹣50)出发,沿x轴向点A以每秒1个单位长度的速度运动,到达点A时停止运动.运动时间为t秒.

1)∠BCD的度数为______°.

2)当t_____时,PCD为等腰三角形.

3)如图2,以点P为圆心,PC为半径作⊙P

①求当t为何值时,⊙P与四边形ABCD的一边(或边所在的直线)相切.

②当t______时,⊙P与四边形ABCD的交点有两个;当t_____时,⊙P与四边形ABCD的交点有三个.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线)的顶点是,抛物线轴交于点,与直线交于点.过点轴于点,平移抛物线使其经过点得到抛物线),抛物线轴的另一个交点为.

(1)若,求点的坐标

(2)若,求的值.

(3)若四边形为矩形,,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,山上有一座高塔,山脚下有一圆柱形建筑物平台,高塔及山的剖面与圆柱形建筑物平台的剖面ABCD在同一平面上,在点A处测得塔顶H的仰角为35°,在点D处测得塔顶H的仰角为45°,又测得圆柱形建筑物的上底面直径AD6m,高CD2.8m,则塔顶端H到地面的高度HG为(

(参考数据:

A.10.8mB.14mC.16.8mD.29.8m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,AB的直径,C上一点,连接AC,过点C作直线D),点EDB上任意一点(点DB除外),直线CE于点F.连接AF与直线CD交于点G.

1)求证:

2)若点EAD(点A除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究:

已知二次函数y=﹣x2+x+2的图象与x轴交于AB两点(点B在点A的左侧),与y轴交于点C

1)求点ABC的坐标;

2)求证:ABC为直角三角形;

3)如图,动点EF同时从点A出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动.当点F停止运动时,点E随之停止运动.设运动时间为t秒,连结EF,将AEF沿EF翻折,使点A落在点D处,得到DEF.当点FAC上时,是否存在某一时刻t,使得DCO≌△BCO?(点D不与点B重合)若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正五边形ABCDE内接于⊙O,过点A作⊙O的切线交对角线DB的延长线于点F,则下列结论不成立的是(  )

A. AEBD B. AB=BF C. AFCD D. DF=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等边三角形,DE分别是BCCB延长线上的点,且,连接ADAEBMCN分别是△ABE和△ACD的高线,垂足分别为MN BGCH分别是∠ABE和∠ACD的平分线,分别交AEAD于点GH.

证明:(1)ABE∽△DCA;

(2)sinMBG=sinNCH.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线yx+3分别与x轴、y轴交于点AC,直线ymx+分别与x轴、y轴交于点BD,直线AC与直线BD相交于点M(﹣1b

1)不等式x+3≤mx+的解集为   

2)求直线AC、直线BDx轴所围成的三角形的面积.

查看答案和解析>>

同步练习册答案