精英家教网 > 初中数学 > 题目详情
(2004•广州)如图,PA为圆的切线,A为切点,PBC为割线,∠APC的平分线交AB于点D,交AC于点E.
求证:(1)AD=AE;(2)AB•AE=AC•DB.

【答案】分析:(1)要证明AD=AE,只需证明∠ADE=∠AED;根据三角形的外角的性质和弦切角定理即可证明;
(2)要证明AB•AE=AC•DB,只需证明,根据△APB∽△CPA,得,根据△PBD∽△PEA,得,联立两式,可得出所求的结论.
解答:证明:(1)∵∠ADE=∠APD+∠PAD,∠AED=∠CPE+∠C,
又∠APD=∠CPE,∠PAD=∠C.
∴∠ADE=∠AED.
∴AD=AE.

(2)∵∠APB=∠CPA,∠PAB=∠C,
∴△APB∽△CPA,得
∵∠APE=∠BPD,∠AED=∠ADE=∠PDB,
∴△PBD∽△PEA,得

∴AB•AE=AC•DB.
点评:本题考查了弦切角定理、相似三角形的判定和性质等知识,熟练运用相似三角形的判定和性质是解答(2)题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:2004年全国中考数学试题汇编《一次函数》(05)(解析版) 题型:解答题

(2004•广州)如图,直线y=(x+1)分别与x轴、y轴相交于A、B两点,等边△ABC的顶点C在第二象限.
(1)在所给图中,按尺规作图要求,求作等边△ABC(保留作图痕迹,不写作法);
(2)若一次函数y=kx+b的图象经过A、C两点,求k、b的值;
(3)以坐标原点O为圆心、OB的长为半径的圆交线段CA于点D,交CA的延长线于点E.求证:BD⊥CE.

查看答案和解析>>

科目:初中数学 来源:2004年广东省广州市中考数学试卷(解析版) 题型:解答题

(2004•广州)如图,直线y=(x+1)分别与x轴、y轴相交于A、B两点,等边△ABC的顶点C在第二象限.
(1)在所给图中,按尺规作图要求,求作等边△ABC(保留作图痕迹,不写作法);
(2)若一次函数y=kx+b的图象经过A、C两点,求k、b的值;
(3)以坐标原点O为圆心、OB的长为半径的圆交线段CA于点D,交CA的延长线于点E.求证:BD⊥CE.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《圆》(14)(解析版) 题型:解答题

(2004•广州)如图,正六边形的螺帽的边长a=17mm,这个扳手的开口b最小应是多少?(结果精确到1mm)

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《三角形》(06)(解析版) 题型:填空题

(2004•广州)如图,CB、CD分别是钝角△AEC和锐角△ABC的中线,且AC=AB,给出下列结论:①AE=2AC;②CE=2CD;③∠ACD=∠BCE;④CB平分∠DCE.请写出正确结论的序号    (注:将你认为正确结论的序号都填上).

查看答案和解析>>

同步练习册答案