精英家教网 > 初中数学 > 题目详情
6.如图,菱形ABCD的边长为2,∠ABC=60°,E是AD的中点,点P是对角线BD上的动点,当AP+PE的值最小时,PC的长是(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{3}$

分析 作点E关于直线BD的对称点E′,连接AE′,则线段AE′的长即为AP+PE的最小值,再由轴对称的性质可知DE=DE′=1,故可得出△AE′D是直角三角形,由菱形的性质可知∠PDE′=$\frac{1}{2}$∠ADC=30°,根据锐角三角函数的定义求出PE的长,进而可得出PC的长.

解答 解:如图所示,
作点E关于直线BD的对称点E′,连接AE′,则线段AE′的长即为AP+PE的最小值,
∵菱形ABCD的边长为2,E是AD边中点,
∴DE=DE′=$\frac{1}{2}$AD=1,
∴△AE′D是直角三角形,
∵∠ABC=60°,
∴∠PDE′=$\frac{1}{2}$∠ADC=30°,
∴PE′=DE′•tan30°=$\frac{\sqrt{3}}{3}$,
∴PC=$\sqrt{PE{′}^{2}+CE{′}^{2}}$=$\sqrt{(\frac{\sqrt{3}}{3})^{2}+{1}^{2}}$=$\frac{2\sqrt{3}}{3}$.
故选:C.

点评 本题考查的是轴对称-最短路线问题,熟知菱形的性质及锐角三角函数的定义是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(1,0),(7,0).
(1)对于坐标平面内的一点P,给出如下定义:如果∠APB=45°,则称点P为线段AB的“等角点”.显然,线段AB的“等角点”有无数个,且A、B、P三点共圆.
①设A、B、P三点所在圆的圆心为C,直接写出点C的坐标和⊙C的半径;
②y轴正半轴上是否有线段AB的“等角点”?如果有,求出“等角点”的坐标;如果没有,请说明理由;
(2)当点P在y轴正半轴上运动时,∠APB是否有最大值?如果有,说明此时∠APB最大的理由,并求出点P的坐标;如果没有请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,在数轴上点A表示的数为$\sqrt{3}$,点B表示的数为6.2,点A、B之间表示整数的点共有(  )个.
A.3B.4C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列实数中,最小的是(  )
A.-1B.-2C.-$\sqrt{2}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.化简(x32的结果是(  )
A.2x3B.x5C.x6D.x9

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.把$\frac{\sqrt{45}}{2\sqrt{20}}$化成最简二次根式的结果是(  )
A.$\frac{3}{2}$B.$\frac{3}{4}$C.$\frac{\sqrt{5}}{2}$D.2$\sqrt{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,△ABC内接于⊙O,OC⊥OB,OD⊥AB于D交AC于E点,已知⊙O的半径为1,则AE2+CE2的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,直线y=x+1与y轴交于点A1,依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn-1,使得点A1、A2、…,An在直线x+1上,点C1、C2、…,Cn在x轴上,则点Bn的坐标是(  )
A.(2n-1,2n-1B.(2n-1+1,2n-1C.(2n-1,2n-1)D.(2n-1,n)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.由6个大小相同的小正方体组合成一个几何体,其俯视图如图所示,其中正方形中的数字表示该位置放置的小正方体的个数,则该几何体的主视图为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案