试题分析:(1)首先设正方形BEFG的边长为x,易得△AGF∽△ABC,根据相似三角形的对应边成比例,即可求得BE的长;(2)首先由△MEC∽△ABC与勾股定理,求得B′M,DM与B′D的平方,然后分别从若∠DB′M、∠DB′M和∠B′DM分别是直角,列方程求解即可;(3)分别从
,
,
和
时去分析求解即可求得答案:
①如图③,当F在CD上时,EF:DH=CE:CH,即2:3=CE:4,∴CE=
.
∴t=BB′=BC﹣B′E﹣EC=6﹣2﹣
.
∵ME=2﹣
t,∴FM=
t,
∴当
时,S=S
△FMN=
×t×
t=
t
2.
②如图④,当G在AC上时,t=2,
∵EK=EC•tan∠DCB=
,∴FK=2﹣EK=
﹣1.
∵NL=
,∴FL=t﹣
,∴当
时,S=S
△FMN﹣S
△FKL=
t
2﹣
(t﹣
)(
﹣1)=
.
③如图⑤,当G在CD上时,B′C:CH=B′G:DH,即B′C:4=2:3,解得:B′C=
,
∴EC=4﹣t=B′C﹣2=
. ∴t=
.
∵B′N=
B′C=
(6﹣t)=3﹣
t,∴GN=GB′﹣B′N=
t﹣1.
∴当
时,S=S
梯形GNMF﹣S
△FKL=
×2×(
t﹣1+
t)﹣
(t﹣
)(
﹣1)=
.
④如图⑥,当
时,
∵B′L=
B′C=
(6﹣t),EK=
EC=
(4﹣t),B′N=
B′C=
(6﹣t)EM=
EC=
(4﹣t),
∴S=S
梯形MNLK=S
梯形B′EKL﹣S
梯形B′EMN=
.
综上所述:
.
试题解析:(1)如图①,设正方形BEFG的边长为x,则BE=FG=BG=x.
∵AB=3,BC=6,∴AG=AB﹣BG=3﹣x.
∵GF∥BE,∴△AGF∽△ABC. ∴
,即
,解得:x=2,即BE=2.
(2)存在满足条件的t,理由如下:
如图②,过点D作DH⊥BC于H,则BH=AD=2,DH=AB=3,
由题意得:BB′=HE=t,HB′=|t﹣2|,EC=4﹣t,
∵EF∥AB,∴△MEC∽△ABC. ∴
,即
. ∴ME=2﹣
t.
在Rt△B′ME中,B′M
2=ME
2+B′E
2=2
2+(2﹣
t)
2=
t
2﹣2t+8.
在Rt△DHB′中,B′D
2=DH
2+B′H
2=3
2+(t﹣2)
2=t
2﹣4t+13.
过点M作MN⊥DH于N,则MN=HE=t,NH=ME=2﹣
t,∴DN=DH﹣NH=3﹣(2﹣
t)=
t+1.
在Rt△DMN中,DM
2=DN
2+MN
2=(
t+1)
2+ t
2=
t
2+t+1.
(Ⅰ)若∠DB′M=90°,则DM
2=B′M
2+B′D
2,即
t
2+t+1=(
t
2﹣2t+8)+(t
2﹣4t+13),解得:t=
.
(Ⅱ)若∠B′MD=90°,则B′D
2=B′M
2+DM
2,即t
2﹣4t+13=(
t
2﹣2t+8)+(
t
2+t+1),解得:t
1=﹣3+
,t
2=﹣3﹣
(舍去).∴t=﹣3+
.
(Ⅲ)若∠B′DM=90°,则B′M
2=B′D
2+DM
2,即
t
2﹣2t+8=(t
2﹣4t+13)+(
t
2+t+1),此方程无解.
综上所述,当t=
或﹣3+
时,△B′DM是直角三角形.
(3)
.