精英家教网 > 初中数学 > 题目详情
18.重庆市是著名的山城,许多美丽的建筑建在山上,如图,刘老师为了测量小山项一建筑物DE的高度,和潘老师一起携带测量装备前往测量.刘老师在山脚下的A处测得建筑物顶端D的仰角为53°,山坡AE的坡度i=1:5,潘老师在B处测得建筑物顶端D的仰角为45°.若此时刘老师与潘老师的距离AB=200m,求建筑物DE的高度.(sin53°≈$\frac{4}{5}$,cos53°≈$\frac{3}{5}$,tan53°≈$\frac{4}{3}$,结果精确到0.1m)

分析 设DC的长为xm,则CB=xm,根据tan53°=$\frac{DC}{AC}$,表示出AC的长,得到$\frac{3}{4}$x+x≈200,求出CB的长,进而求出AC的长,根据坡比求出CE,从而求出DE的长.

解答 解:设DE的长为xm,则CB=xm,
∴tan53°=$\frac{DC}{AC}$,
$\frac{4}{3}$≈$\frac{x}{AC}$,
AC≈$\frac{3x}{4}$,
∵AB=200m,
∴$\frac{3}{4}$x+x≈200,
解得x≈$\frac{800}{7}$,
AC≈200-$\frac{800}{7}$=$\frac{600}{7}$m,
CE=$\frac{1}{5}$AC≈$\frac{1}{5}$×$\frac{600}{7}$=$\frac{120}{7}$m,
∴DE=DC-CE≈$\frac{800}{7}$-$\frac{120}{7}$=$\frac{680}{7}$≈97.1m.

点评 本题考查了解直角三角形的应用--仰角俯角问题、坡度坡角问题,要求学生能借助仰角构造直角三角形并解直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.把下列各式分解因式:
(1)a(x-y)-b(y-x)                  
(2)(x2+4)2-16x2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,反比例函数y=$\frac{k}{x}$(k>0)与一次函数y=ax-2(a>0)的图象都经过点A、B,过点A作AC⊥y轴与点C,过点B作BD⊥x轴于点D.
(1)求证:AB∥CD;
(2)若a=2,△ABE的面积为9,求反比例函数y=$\frac{k}{x}$的解析式;
(3)在(2)的条件下,M为BE上一点,动点T从点B出发,沿BM→MA运动到点A停止,在BM上运动的速度是每秒$\sqrt{5}$个单位长度,在MA上运动的速度是每秒1个单位长度.若点T运动的时间最少,求此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.为了响应市政府提出的“创建森林城市”的号召,市林业局计划今年在瓯江口新区种植梧桐、紫玉兰和香樟三类树苗,其中香樟树苗的株数是梧桐树苗的2倍,三种树苗的单价如图所示,设计划种植x株梧桐树苗,y株紫玉兰树苗;
(1)根据信息,完成表格:
 梧桐香樟紫玉兰合计
树苗株数x2xy3x+y
费用50x70x8y120x+8y
(2)若三种树苗共种植150株,购买树苗共花费5040元,那么三种树苗分别种植了多少株?
(3)若购买树苗的总费用是7232元,那么最少能种植树苗64株.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知,OB⊥AE于点O,OF平分∠COE,∠AOF=$\frac{3}{2}$∠BOF,求证:∠BOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.解不等式组$\left\{\begin{array}{l}{x-2(x-3)≥5}\\{\frac{2x-1}{5}<\frac{x+1}{2}}\end{array}\right.$,写出所有符合条件的整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.在平行四边形ABCD中,BC边上的高为2,AB=$\sqrt{29}$,AC=2$\sqrt{5}$,则平行四边形ABCD的周长等于2$\sqrt{29}$+18.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算:$\frac{1}{a-1}$-$\frac{2}{1-{a}^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图1,D、E、F分别是△ABC三边AB、BC和AC上的点,若∠1=∠2,∠3=∠4,∠5=∠6,我们称△DEF为△ABC的反射三角形.

(1)若△ABC是正三角形(如图2),猜想其反射三角形的形状,并画出图形加以说明;
(2)如图3,△DEF是△ABC的反射三角形,AB=AC,∠A=50°,求△DEF各个角的度数;
(3)利用图1探究:
①△ABC的三个内角与其反射三角形DEF的对应角(如∠DEF与∠A)之间的数量关系;
②在直角三角形和钝角三角形中,是否存在反射三角形?如果存在,说出其反射三角形的形状;如果不存在,说明理由.

查看答案和解析>>

同步练习册答案