精英家教网 > 初中数学 > 题目详情
精英家教网如图,四边形ABCD内接于以BC为直径的半圆,圆心为O,且AB=AD,延长CB、DA交于P,过C点作PD的垂线交PD的延长线于E,当PB=BO,CD=18时,
求:(1)⊙O的半径长;(2)DE的长.
分析:(1)连接OA、BD交于F,由BC是⊙O的直径可以知道∠BDC=90°,而OA是半径,AB=AD根据垂径定理可以知道OA⊥BD,所以OA∥CD;接着可以得到
OA
CD
=
PD
PC
;而PB=BO=OC,CD=18;现在可以求出OA了,也就求出了圆的半径.
(2)由OF∥CD,OB=OC根据中位线定理可以求出OF,AF;在根据勾股定理在Rt△DBC中可以求出BD,DF;接着在Rt△ADF中求出AD;然后利用平行线的性质得∠FAD=∠CDE证明△AFD∽△DEC,利用相似三角形的对应边成比例可以求出DE了.
解答:精英家教网解:(1)连接OA,BD交于F,
∵BC是⊙O的直径,
∴∠BDC=90°;
又∵OA是半径,AB=AD;
∴OA⊥BD,OA∥CD;
OA
CD
=
PO
PC

∴OA=12;
∴⊙O的半径为12.

(2)∵OF∥CD,
OF
DC
=
BO
BC
=
1
2

∴OF=9,AF=3;
∵BD=
BC2-DC2
=6
7

∴DF=
1
2
BD=3
7

∴AD=
DF2+AF2
=6
2

∵∠AFD=∠DEC=90°,OA∥DC,∠FAD=∠CDE;
∴△AFD∽△DEC;
DE
DC
=
AF
AD

DE
18
=
3
6
2

∴DE=
9
2
2

∴DE为
9
2
2
点评:此题是圆的知识综合性比较强的一道题,把垂径定理,平行线分线段成比例,相似三角形的性质与判定,勾股定理,中位线定理等知识都放在圆的背景中,充分发挥这些知识的作用解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案