精英家教网 > 初中数学 > 题目详情
(2009•通州区二模)已知二次函数y=ax2-2ax+b(a≠0)的图象与x轴分别交于A、B两点(A点在B点左侧),与y轴交于点C,直线y=-x+b经过点B、C,且B点坐标为(3,0).
(1)求二次函数解析式;
(2)在y轴上是否存在点P,使得以点P、B、C、A为顶点的四边形是梯形?若存在,求出P点坐标;若不存在,请说明理由.

【答案】分析:(1)把B(3,0)代入y=-x+b得一次函数关系式,从而求出C点坐标,把B(3,0),C(0,3)代入抛物线解析式可确定解析式;(2)依题意可求直线AC,BC的解析式,画图分析,梯形的平行边只可能是:AP∥BC、BP∥AC,利用平行直线的解析式的关系设直线解析式,分别把已知点代入可求直线AP、BP的解析式,分别令x=0,可求P点坐标.
解答:解:(1)把B(3,0)代入y=-x+b,
∴b=3,
∴C点坐标为(0,3),
把B(3,0)代入y=ax2-2ax+3,
∴a=-1,(1分)
∴二次函数解析式为y=-x2+2x+3.(2分)

(2)当AP1∥CB时,直线过点A(-1,0),
设AP1所在直线解析式为y=-x+b,
把点A代入b=-1,
∴P1点坐标是(0,-1).(3分)
当P2B∥AC时,设AC所在直线为y=kx+b,
把点A(-1,0),C(0,3)代入得
∴AC所在直线为y=3x+3,
又∵P2B过点B(3,0),设P2B所在直线为y=kx+b,
∴P2B所在直线为y=3x-9,
∴P2点坐标是(0,-9),(5分)
综上所述存在这样的点P使得以P、B、C、A为顶点的四边形是梯形,
点P的坐标是(0,-1),(0,-9).(6分)
点评:本题考查了点的坐标求法及一次函数解析式,二次函数解析式确定的方法,同时根据梯形性质探求梯形第四个顶点坐标,需要注意的是平行直线的解析式一次项系数相同,常数项不同.
练习册系列答案
相关习题

科目:初中数学 来源:2009年北京市通州区中考数学二模试卷(解析版) 题型:解答题

(2009•通州区二模)阅读理解题:阅读下列材料,关于x的方程:x+=c+的解是x1=c,x2=
x-=c-(即x+=c+)的解是x1=c,x2=-;x+=c+的解是:x1=c,x2=,…
(1)观察上述方程及其解的特征,直接写出关于x的方程x+=c+(m≠0)的解,并利用“方程的解”的概念进行验证;
(2)通过(1)的验证所获得的结论,你能解出关于x的方程:x+=a+的解吗?若能,请求出此方程的解;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年北京市通州区中考数学二模试卷(解析版) 题型:解答题

(2009•通州区二模)如图,在梯形ABCD中,AD∥BC,∠ABC=60°,DB平分∠ABC,AD=2,翻折梯形ABCD使点B与点D重合.
(1)画出翻折图形,并求出折痕的长;
(2)若BC=3AD,(1)中的折痕与底边BC的交点为E,求:的值.

查看答案和解析>>

科目:初中数学 来源:2009年北京市通州区中考数学二模试卷(解析版) 题型:解答题

(2009•通州区二模)已知二次函数y=x2-3x-4.
(1)用配方法求这个二次函数图象的顶点坐标和对称轴;
(2)画出这个函数的大致图象,指出函数值不小于0时x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2009年北京市通州区中考数学二模试卷(解析版) 题型:解答题

(2009•通州区二模)解方程组:

查看答案和解析>>

同步练习册答案