精英家教网 > 初中数学 > 题目详情

如图,抛物线经过三点.

(1)求该抛物线的解析式;

(2)在该抛物线的对称轴上存在一点,使的值最小,求点的坐标以

的最小值;

(3)在轴上取一点,连接.现有一动点以每秒个单位长度的速度从点出发,沿线段向点运动,运动时间为秒,另有一动点以某一速度同时从点出发,沿线段向点运动,当点、点两点中有一点到达终点时,另一点则停止运动(如右图所示).在运动的过程中是否存在一个值,使线段恰好被垂直平分.如果存在,请求出的值和点的速度,如果不存在,请说明理由.

【解析】此题主要考查了用待定系数法求二次函数解析式,以及利用函数图象和图象上点的性质判断符合某一条件的点是否存在,是一道开放性题目,有利于培养同学们的发散思维能力

 

【答案】

(1)4分抛物线的解析式是

(2)4分点关于抛物线的对称轴对称,直线与对称轴的交点为,点的坐标为),以及的最小值为的长度

的坐标为),得2分;

的最小值为的长度得2分

(3)4分,存在,连接DQ∥BC,

△ADQ∽△ABC,以下易得的速度是个单位长度/秒.

 

解得得2分,点的速度是个单位长度/秒,得2分

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.
(1)求出抛物线的解析式;
(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点,
(1)求抛物线的解析式;
(2)求该抛物线的顶点坐标以及最值;
(3)已知AD=AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t秒的移动,线段PQ被BD垂直平分,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•苏州一模)如图,抛物线经过A,C,D三点,且三点坐标为A(-1,0),C(0,5),D(2,5),抛物线与x轴的另一个交点为B点,点F为y轴上一动点,作平行四边形DFBG,
(1)B点的坐标为
(3,0)
(3,0)

(2)是否存在F点,使四边形DFBG为矩形?如存在,求出F点坐标;如不存在,说明理由;
(3)连结FG,FG的长度是否存在最小值?如存在求出最小值;若不存在说明理由;
(4)若E为AB中点,找出抛物线上满足到E点的距离小于2的所有点的横坐标x的范围:
-1<x<
5-
91
5
5+
91
5
<x<3
-1<x<
5-
91
5
5+
91
5
<x<3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•高要市二模)已知:如图,抛物线经过点O、A、B三点,四边形OABC是直角梯形,其中点A在x轴上,点C在y轴上,BC∥OA,A(12,0)、B(4,8).
(1)求抛物线所对应的函数关系式;
(2)D为OA的中点,动点P自A点出发沿A→B→C→O的路线移动,若线段PD将梯形OABC的面积分成1﹕3两部分,求此时P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线经过A(-2,0)、B(8,0)两点,与y轴正半轴交与点C,且AB=BC,点P为第一象限内抛物线上一动点(不与B、C重合),设点P的坐标为(m,n).
(1)求抛物线的解析式;
(2)点D在BC上,且PD∥y轴,探索
BD•DCPD
的值;
(3)设抛物线的对称轴为l,若以点P为圆心的⊙P与直线BC相切,请写出⊙P的半径R关于m函数关系式,并判断⊙P与直线l的位置关系.

查看答案和解析>>

同步练习册答案